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Jon Krohn: 00:00:00 This is episode number 881 with Emily Webber, principal 

solutions architect at AWS. Today’s episode is brought to 

you by ODSC, the Open Data Science Conference. 

 00:00:17 Welcome to the SuperDataScience Podcast, the most 

listened to podcast in the data science industry. Each 

week, we bring you fun and inspiring people and ideas, 

exploring the cutting edge of machine learning, AI, and 

related technologies that are transforming our world for 

the better. I'm your host, Jon Krohn. Thanks for joining 

me today. And now, let's make the complex simple. 

 00:00:42 Welcome back to the SuperDataScience Podcast. Today 

I'm delighted to have the amusing, brilliant and zen Emily 

Webber as our guest on the show. Emily is a principal 

solutions architect in the elite Annapurna Labs machine 

learning service team that's part of Amazon Web Services. 

She works directly on the Trainium and Inferentia 

hardware accelerators for, respectively, training and 

making inferences with AI models. She also works on the 

NKI, or NKI, Neuron Kernel Interface that acts as a bare 

metal language and compiler for programming AWS 

instances that use Trainium and Inferentia chips. 

 00:01:29 She wrote a book on pre-training foundation models. She 

spent six years developing distributed systems for 

customers on Amazon's cloud-based machine learning 

platform, Sagemaker, and she leads the neuron data 

science community, as well as technical aspects for the 

Build on Trainium program, a $110 million credit 

investment program for academic researchers. Today's 

episode is on the technical side and will appeal most to 

anyone who's keen to understand the relationship 

between today's gigantic AI models and the hardware that 

they run on. 

 00:02:01 In today's episode, Emily details the little known story of 

how Annapurna Labs revolutionized cloud computing, 
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what it takes to design hardware that can efficiently train 

and deploy models with billions of parameters, how 

Trainium 2 became the most powerful AI chip on AWS, 

why AWS is investing $110 million worth of compute 

credits in academic AI research, and how meditation and 

Buddhist practice can enhance your focus and problem 

solving abilities in tech. All right, you ready for this 

fabulous episode? Let's go. 

 00:02:30 Emily, welcome to the SuperDataScience Podcast. I'm so 

excited to have you on the show. Where are you calling in 

from today? 

Emily Webber: 00:02:43 Hi, Jon. Excited to be here. I'm calling in from 

Washington, DC. 

Jon Krohn: 00:02:47 Nice. It's interesting times in that part of the world. Lots 

of things happening, but we're not here. We've never been 

a political show. We won't get into it. At the time of 

recording, I'm excited. I'm looking forward to being at the 

Data and AI Summit in Richmond, Virginia, which is not 

crazy far from DC, or at least Virginia isn't. That part of 

the world, Virginia, near DC, I've always really enjoyed 

everything about it, except the traffic. 

Emily Webber: 00:03:23 Yeah, no, the traffic is tough actually, this time of year it's 

lovely, because the cherry blossoms are just beginning to 

bloom. So peak season for cherry blossoms is coming up 

at the end of March. But one of the primary reasons I'm 

in DC, is because it's the HQ2 area for Amazon, so it's our 

second headquarters. You remember a number of years 

ago we did this sort of HQ2 search and Crystal City, 

Virginia was awarded HQ2, and so I moved out here a 

number of years ago to be a part of all of the activities 

and everything that's going on there. 

Jon Krohn: 00:04:02 That's very cool. Now, it reminds me though, wasn't it 

initially supposed to be Manhattan? It was supposed to 
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be New York City and then there was an uprising against 

it, and so they had to pick somewhere else. Because it 

was like there was this concern, I can't remember exactly, 

but that it would change too much too fast, this huge 

influx of people into an already busy place or something 

like that. 

Emily Webber: 00:04:25 Yeah, no, there were a lot of great cities, obviously a lot of 

great choices. I think the original spec was spread across 

three cities, I think when they first announced that it was 

like New York, DC and then I want to say somewhere in 

Tennessee, if I'm not mistaken. And then, that sort of 

boiled down into definitely the DC area and some other 

places as well. But yeah, primarily DC. 

Jon Krohn: 00:04:55 Nice. Well, I'm glad it's working out there. It sounds like a 

great environment to work in. Certainly AWS is doing a lot 

of exciting things. I thought that we might start, we 

almost never start with going with somebody's career 

path, but in your case, we're going to do that, because 

you have a unique career trajectory that I think provides 

some good context for the rest of the episode. So you 

started with a degree in international finance and now 

you've been a hands-on practitioner at Amazon for some 

time working on AI and machine learning. So, tell us 

about that transition to what you're doing today, your 

draw to AIML. 

Emily Webber: 00:05:32 Yeah, totally. So I would say I got into computer science a 

little bit later. Definitely. I lived in Arizona actually, is 

where I got that degree, from a school called Prescott 

College. And I studied definitely finance. I was actually 

interested in Buddhism as well. So I lived at a retreat 

center for many years and studied meditation, and all 

sorts of things. 

Jon Krohn: 00:06:03 You do seem super zen, super empathetic. Our listeners 

wouldn't know this, but we were talking for a while before 
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starting recording and I was like, "Wow, Emily is just 

such an engaging, yeah, empathetic person." And I don't 

know, so all that time in the monastery I think paid off. 

Emily Webber: 00:06:20 Yes. I find myself coming back to this grounding many 

times actually, because when we're in computer science, 

when we're trying to solve an algorithmic problem, trying 

to solve a compute problem, a development problem, 

many times what we really need is focus, actually. We 

need the ability to just bring our mind back to what the 

goal is, what the details are, what the challenge is, and 

not be overwhelmed by getting too fixated on something 

or being afraid of something. And just developing this sort 

of mental ability to calmly abide and calmly focus has 

honestly been really helpful in my computer science 

degree. 

 00:07:10 So I studied at the University of Chicago after that and 

did a joint degree that was a master's of public policy with 

computational analysis actually. So studying public 

policy projects through the lens of computer science, and 

that was where I developed a love of data science. I 

interned at what's called the Data Science for Summer 

Good Social Fellowship, where we analyzed public policy 

problems and worked with organizations who were 

nonprofits or NGOs, analyzed their data science and then 

delivered projects to them. And so, that's sort of where I 

got very interested obviously in technology, technology 

development and trying to make a positive impact in the 

world. And that has led me to AWS. 

Jon Krohn: 00:08:04 Very nice. Yeah, you've worked extensively with 

Sagemaker, which a lot of our data science listeners 

would be familiar with. Maybe you can give, because you 

do an even better job than I could at explaining what 

Sagemaker is. So you can let us know both Sagemaker 

and other AWS AI services that you've worked with, but 

now you're working on the Trainium and Inferentia team, 
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so it's hardware, compute hardware that you would use 

instead of a GPU, you'd use a Trainium or Inferentia chip 

to be doing a lot of the heavy lifting in training in the case 

of Trainium, or at inference time with the Inferentia chip. 

Yeah. So fill us in on Sagemaker, other AWS AI services 

that you've worked on in the past, and why hardware, 

Trainium, Inferentia took your fancy recently. 

Emily Webber: 00:08:49 Yeah, absolutely. So I joined Amazon actually as one of 

our first Sagemaker solution architect SAs. So I got to 

work with some of our earliest customers in the 

Sagemaker days and figure out- 

Jon Krohn: 00:09:03 What's an SA? 

Emily Webber: 00:09:05 Cool. So what is an SA, a solutions architect at AWS, 

fundamentally, we work with customers. So that means 

sort of your fingers are like on the heartbeat, they're on 

the pulse of the business or on the pulse of the service, 

because you're explaining what the service does to 

customers every day. You're in the weeds with developers, 

with data scientists, leadership on both the customer and 

the service team about what feature A is doing, how well 

it's doing, and what it needs to do in the future. So I love 

being a solutions architect. I've always profoundly enjoyed 

this as a role, because you have visibility into the whole 

picture, you get to be a part of the whole lifecycle. And so, 

I was one of our first solution architects for Sagemaker. 

 00:10:01 So Sagemaker is a managed ML infrastructure at AWS. 

Essentially you can use Sagemaker to spin up a notebook 

server, use Sagemaker to spin up what we call training 

jobs, which is where you're training your model in the 

context of a job. Use Sagemaker to spin up ML hosting 

infrastructure. We have prepackaged models that are 

available in Sagemaker that you can pull down for 

training and hosting. And we have a really cool 

development environment. So Sagemaker Studio and the 
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unified studio that lets a data scientist. Actually what it 

does is it decouples the UI that's hosting your 

development environment from all of the compute that's 

running your notebook and running your analytics job. 

And we package it up really, really nicely. So Sagemaker 

Studio is a great data science workbench, for example, 

where an enterprise data science team can just get 

onboarded, have all the tools that they need to go analyze 

some data and train some models. 

Jon Krohn: 00:11:08 Very nice. Yeah. And yeah, so then what was the 

transition like? Why did you go from software to hardware 

in the AI space? 

Emily Webber: 00:11:18 Yeah, absolutely. So through many years on Sagemaker, 

like many people, I saw how important foundation models 

were. It was obvious that customers were increasingly 

going to foundation models for their ability to unlock a 

variety of use cases, but also the size of the models just 

kept getting larger and larger, and they were just 

consuming so many resources. And so, I set up many of 

our distributed training capabilities. So we were running 

distributed training workshops with customers, we were 

doing accelerator health checks, we were developing 

managed clusters, and that led to a service called 

Sagemaker HyperPod, which is a fully managed parallel 

environment to establish clusters essentially. 

 00:12:14 So when you want to train and host large language 

models and large foundation models on AWS, Sagemaker 

HyperPod is a really easy way to have a managed slurm 

environment that you can hop into and take advantage of 

optimized libraries, and have a variety of health checks 

and cluster management tools already available for you 

without needing to develop that. And through this 

journey, I became convinced that obviously foundation 

models were the future of AI, but I also saw increasingly 

how infrastructure was just the make or break really 
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everything came down to, from a customer perspective, 

how many accelerators can I get? What is the size of those 

accelerators? How healthy are they and how efficiently 

can I train and host my models on top of that? 

 00:13:11 Once I realized that that was the game, that that was the 

primary focus for customers, I just wanted to dive in and 

figure out what does it take to actually develop a new 

accelerator? How do you develop a software stack on top 

of that, and then how do you expose that through the rest 

of the cloud? So fundamentally, I love the business 

opportunity. It's just really exciting to think about, 

obviously developing new accelerators and bringing those 

to customers, but also the technical problems are just so 

interesting. It is absolutely a joy to sit down and think 

about, okay, how do I write a kernel for this algorithm? 

How do we design communication collectives for this 

whole host of workloads? Like, reinventing many of the 

foundations of the ML technology stack as a whole on the 

cloud is just the absolute biggest draw in my mind. 

Jon Krohn: 00:14:09 Excited to announce, my friends, that the 10th annual 

ODSC East, the one conference you don't want to miss in 

2025, is returning to Boston from May 13-15! And I'll be 

there leading a four-hour, hands-on workshop on 

designing and deploying AI Agents in Python. ODSC East 

is three days packed with hands-on sessions and deep 

dives into cutting-edge AI topics, all taught by world-class 

AI experts. Plus, there are many great networking 

opportunities. ODSC East is seriously my favorite 

conference in the world. No matter your skill level, ODSC 

East will help you gain the AI expertise to take your 

career to the next level. Don’t miss - Online Special 

Discount ends soon! Learn more at odsc.com/boston. 

 00:14:56 Wow. Yeah, your genuine excitement for it really shines 

through. Absolutely. So you've said the word accelerate a 

few times. I just want to disambiguate. So, earlier when I 

Show Notes: http://www.superdatascience.com/881   8 

http://odsc.com/boston
http://www.superdatascience.com/881


 
 

 
 
 
 
 

said you would use a Trainium or Inferentia chip in lieu 

of a GPU, that term accelerator would apply to, it's the 

broader umbrella that includes Trainium, Inferentia and 

GPUs. These are all different kinds of hardware 

accelerators specialized, in the case of Trainium and 

Inferentia, specifically for neural networks, for deep 

learning models like the large language models that have 

taken the world by storm, and that got you, the 

foundation models that got you excited about moving into 

this space, and it's hardware driven. 

 00:15:41 It's such an interesting phenomenon to watch from a 

distance, where the scientific advances, the kind of new 

ideas in terms of how should we model. They're not 

necessarily super fast moving. Like, the transformer idea 

many years later is still the dominant paradigm and at 

some point that may be replaced, and that builds upon 

deep learning, which seems like an even more entrenched 

paradigm that will be difficult to shake. Maybe a nice 

thing when you're designing accelerators, because it 

means you have some kind of like linear algebra, some 

kinds of matrix multiplication operations that you can be 

like, "We're probably still going to be doing that in five 

years." 

 00:16:21 But yeah, it sounds like a really exciting space to be 

working in. There's a term that you mentioned as you 

were describing what excites you most about your work, 

that I've got to admit, I don't understand very well, and so 

I bet a lot of our audience doesn't as well, which is this 

idea of a kernel. So when you talk about an algorithm 

kernel, what does that mean? 

Emily Webber: 00:16:42 Absolutely. So fundamentally, a kernel is a function that's 

defined by the user. And when you're thinking about 

programming up at the Python level, we don't really think 

about that way. Everything we define is user defined. So 
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we're like, "What gives? Everything I write is a user 

defined function." 

 00:17:05 This thinking breaks down the further down the compute 

stack you go. So if you want to run a program on 

Trainium and Inferentia, for example, the way that 

happens is you write your program in Python, you write 

your program in PyTorch, and then you're going to 

compile that through something that's called PyTorch 

XLA. So accelerated linear algebra. What PyTorch XLA is 

going to do, it's going to take the model that you defined 

and it's going to represent that as a graph essentially. So 

the structure of your model is represented as a graph. We 

call that graph an HLO, high level operations. So you get 

this HLO graph and then essentially we do a handshake 

between that HLO graph that's generated from XLA, and 

we feed that into the top of our compiler. And so, we 

maintain a compiler that takes the graph that you 

produced from PyTorch and from PyTorch XLA, and we 

convert that through a variety of algorithms and 

processes to ultimately generate the instruction set that 

actually gets executed on the hardware directly. 

 00:18:29 So what's a kernel? A kernel is where you override the 

compiler and you get to define the operations on the chip 

yourself using our kernel library. And our kernel library 

is called NKI, the neuron kernel interface. So 

fundamentally, a kernel is a function that's defined by the 

user and not as generated through the compiler. Now, 

there's a huge variety of sizes of kernels. So you can have 

a kernel that's really just a hello world function, where 

it's like, "Hey, I did a matmul," or, "I did like tensor add," 

and that's to get the software working and make sure you 

have the environment ready. 

 00:19:17 But then, what most people will do is build on top of that 

to define a full operation. So you'll define a full forward 

pass for your model or a full backward pass, or even just 
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a part of it, like maybe just the MLP up projection or 

down projection. And then, what you're doing is you're 

studying the compute optimization of that kernel. You 

want to look at the data movement, you want to look at 

the utilization, you want to look at your memory 

utilization, your compute utilization. And so, I know 

you've had Ron on the session in the past, and so 

everything Ron teaches us and teaches the world about 

compute optimization. We try to apply that when we're 

developing our kernels. So we study the compute 

requirements of a workload and we try to improve it. That 

is the heart of writing a kernel and implementing this 

algorithm that you have that's trying to improve 

something for large language models. We implement that 

as a kernel in order to improve the performance for it. 

Jon Krohn: 00:20:24 An excellent explanation. You are an outstanding teacher 

and we will actually get to later in this episode some of 

the educational stuff that you've been doing. You're kind 

of an inspiration there, but you're naturally such an 

amazing explainer. That was like, 99th percentile of 

explanations of technical concepts that I've ever heard. So 

thank you for that introduction to kernels. And if people 

are interested in that Ron Diamant episode, it's number 

691 of this podcast, also an amazing explainer of 

technical concepts if you want to understand a lot. In that 

episode, we talked a ton about designing accelerators and 

I learned so much in that episode. It was amazing. In fact, 

Ron is such a luminary in this space that at NeurIPS, 

neural information processing systems, arguably the 

most prestigious academic AI conference in the world. I 

was there in Vancouver in December and I met somebody 

new at like a lunch or a dinner, or something. I can't 

remember exactly the context, but they worked on 

Trainium and Inferentia chips, and I'd said, "Oh, we had 

someone from the show." 

 00:21:28 He was like, "Was it Ron?" So yes. 
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Emily Webber: 00:21:34 Absolutely. 

Jon Krohn: 00:21:35 He's an iconic person in this space. Yeah, so fantastic. 

There was a lot in there that some people might want to 

go back over to learn again about kernels. There was one 

term in there that I might define quickly for the audience. 

So you said MLP kind of casually in there is one of the 

things that you could be implementing in a kernel. And 

so, multilayer perceptron I'm guessing is what that is 

there. And so, kind of like one of the fundamental 

building blocks, it's like when you're thinking about 

building a deep learning network, a multilayer perceptron 

is kind of like it was an early deep learning network, but 

then you can also think about it now as something that 

you can scale up into a bigger architecture. 

Emily Webber: 00:22:23 Yes, and it's really interesting to think about how we 

represent data for kernels actually. So the MLP itself, 

when you're designing say like a baby MLP or a tiny MLP, 

in PyTorch, it's crazy easy to do that. It's so easy to just 

define your tensor, define the operations you want to do 

and call it. From the PyTorch perspective, that's it. Your 

job is done, you've created an MLP. But it becomes so 

interesting when you think about the size of that, when 

you want to scale it up, when you want to shrink it, but 

also when you want to actually process it, when you want 

to run the computations on that to execute the operations 

you've defined. And it quickly becomes very challenging to 

do, actually. 

 00:23:20 So when we're defining our kernels and when we're 

defining our programs in Trainium, part of what we want 

to do is think about how we're representing the data, how 

we're structuring the data from the PyTorch perspective. 

And then, the trick, the game is to try to optimize the data 

representation and optimize the program for the 

hardware. Actually, what we want to try and do is pick 

designs within the data structure and within the 
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algorithm that leverage some of the lower-level 

capabilities of the hardware to ultimately get the best 

utilization and the best performance that we can. Once 

you have sort of hardware and software programs that 

are well-synced and running together, and using the 

same assumptions, that's when you can really scale and 

get excellent utilization, and then excellent price 

performance. And that's really where we want to help 

customers go. 

Jon Krohn: 00:24:23 Speaking of the connection between very popular deep 

learning libraries like PyTorch and the interaction of 

those libraries with your hardware, with Trainium, 

Inferentia accelerators, there's something called the AWS 

Neuron SDK, software development kit, which is the SDK, 

the software development kit for these AI chips, for 

Trainium and Inferentia. Can you tell us how AWS 

Neuron enables builders to use the frameworks of their 

choice, like PyTorch or JAX without having to worry 

about the underlying chip architecture? 

Emily Webber: 00:24:57 Yeah, absolutely. So the Neuron SDK is a term that we 

use to cover a very, very large variety of tools. And the 

tools essentially are capabilities that we offer to 

developers to easily take advantage of Trainium and 

Inferentia. Some of the tools are really low-level things, 

like the runtime, the driver, the compiler that pulls 

everything together. Some of them are much higher-level, 

so something like Torch Neuron X, TNX, or essentially 

Neuron X Distributed, NXD. 

 00:25:31 So, NXD is really the primary modeling library that's 

really useful for customers, where when you want to go 

train a model and you want to go host a model on 

Trainium and Inferentia, NXD packages up many of the 

lower-level complexities and it makes it easily available 

for customers to access. Compiling your model, for 

example, is handled by NXD. Sharding your model 
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actually, so taking a model checkpoint, say like a Llama 

or a Pixar model, and then sharding that across the 

accelerators that are available on your instance. 

 00:26:11 NXD actually handles the model sharding for you both 

from a data perspective, taking the checkpoint itself and 

splitting the checkpoint into number of shards, but then 

also the communication and the optimizer updates, and 

the forward pass. NXD is a very, very comprehensive 

modeling library. And so, NXD is useful for of course 

implementing your own model, but also just pulling down 

a model and running it. So when you want to just get 

something that's prepackaged and test it for say 

something like alignment or supervised fine-tuning, or 

hosting, you can pull down the model packages that are 

pre-built and pre-set with NXD, and just run them with 

your experiments and with your changes. And there 

should be very little complexity that's exposed to the 

customer in those cases. 

Jon Krohn: 00:27:10 Very cool. We'll have a link to the Neuron SDK in the 

show notes so people can check that out more. But as 

usual, another great example of your ability to explain 

technical things really well. 

Emily Webber: 00:27:23 Thank you. 

Jon Krohn: 00:27:24 So with your experience previously on the Sagemaker 

side, which we talked about earlier, does training in 

Inferentia work with Sagemaker as well? Are there some 

kinds of, just as the SDK allows you to take your 

framework of choice, is it easy to have Sagemaker blend 

on the hardware side with Trainium and Inferentia? 

Emily Webber: 00:27:45 Yes, absolutely. I mean, you can run Sagemaker Notebook 

instances, you can run Sagemaker Studio on Trainium. If 

you want to say develop a new kernel or test NXD, you 

can do that very easily on Sagemaker as a development 
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environment. We also have many models that we've 

already supported on NXD that we'll make available 

through what's called Sagemaker Jumpstart, where 

Sagemaker Jumpstart is sort of a marketplace for 

machine learning models and LLMs that are prepackaged, 

and available. And when Sagemaker customers are, say, 

browsing in Sagemaker Studio, they can click a button to 

download the model, but they're not actually downloading 

the model. What's happening is they're accessing the 

model through the marketplace, the training and hosting 

infrastructure. A lot of the software is fully managed by 

Sagemaker, and then customers can bring their own data 

sets, they can fine-tune the model, they can host the 

model all through Sagemaker Jumpstart, and that 

absolutely is well integrated with Trainium and Inferentia. 

Jon Krohn: 00:28:56 Hey hey! This is your host, Jon Krohn. I’m excited to 

announce that this northern-hemisphere spring, I’m 

launching my own data science consultancy, a firm called 

“Y Carrot”. (If you’re an ML practitioner who’s familiar 

with “y hat”, you may get our name!). Regardless of who 

you are, if you’re looking for a team that combines 

decades of commercial experience in software 

development and machine learning with 

internationally-recognized expertise in all the cutting-edge 

approaches, including GenAI, multi-agent systems, and 

RAG, you’ve found us! We have rich experience across the 

entire project lifecycle, from problem scoping and 

proof-of-concept through to high-volume production 

deployments. If you’d like to be one of our first clients, 

head to ycarrot.com and click on “Partner with us” to tell 

us how we can help! Again, that’s Y Carrot, 

y-c-a-r-r-o-t-dot-com. 

 00:29:46 Very nice. And yeah, you've been working closely with 

customers on adopting Trainium, so it's something that's 

picking up a lot of speed. Probably because Ron Diamand 

was on this show a couple of years ago. 
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Emily Webber: 00:29:58 No doubt, no doubt. 

Jon Krohn: 00:30:01 And in fact, huge companies like Apple. Apple joined your 

Reinvent CEO keynote last year to talk about their use of 

Inferentia and another chip called Graviton, which you'll 

need to explain to us in a minute, because we haven't 

talked about that on air ever. But they talked about their 

use of Inferentia and Graviton, and why they're excited 

about Trainium 2, another thing that we haven't talked 

about yet in this episode. So what are some of the most 

interesting technical challenges that customers like Apple 

are trying to solve? So let's start there and you can tell us 

about this Graviton chip, the Trainium 2 chip, and maybe 

this kind of relates to a general question that I've been 

meaning to ask you this whole episode, and I have it just 

continue to forget with each wonderful explanation that 

you give after another, which is that why should 

somebody, why should a listener, for example, consider 

using an accelerator like Trainium and Inferentia instead 

of a GPU? Maybe that's a great question to start with, and 

then I'll remind you of the other, the series of questions 

that led me to that question. 

Emily Webber: 00:31:04 Sounds good. Thank you. Thank you. Yeah, so I mean, 

fundamentally at AWS we really believe in customer 

choice. We believe in a cloud. We believe in a cloud service 

provider that enables customers to have choice about 

data sets, have choice about models, and have choice 

about accelerated hardware. We think it's good for 

customers to have that ability and to have real options 

that is ultimately best for consumers and that's best for 

customers. So fundamentally, that's the direction. 

Annapurna Labs is an awesome company. Annapurna 

Labs has been building infrastructure for AWS for many 

years. So Annapurna Labs is a startup that Amazon 

acquired in 2015 primarily to develop the hypervisor, 

actually. 
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 00:32:00 So they developed what's called the Nitro System. Yeah, 

we'll talk it through. They developed it. Yeah, it's like the 

coolest story in tech that is the least told. So here's the 

scoop. So in 2015, the way people were doing cloud 10 

years ago is you had this thing called the hypervisor. And 

the hypervisor essentially was this giant monolithic 

software system that managed the entire host of all 

servers. And the challenge with the hypervisor systems is 

that it made it really hard to innovate for the cloud, 

because all of the control, the communication, the data at 

the server level was implemented in this giant monolithic 

thing called the hypervisor. 

 00:32:57 So Annapurna had this crazy idea of decoupling the parts 

of the hypervisor that you need to scale up the cloud at 

the physical level. So they developed what's called the 

Nitro system today, which provides physical separation 

for things like the data that's running on the instance 

from the communication that's controlling the instance. 

And so, this is both how AWS scales and how AWS 

provides such strong security guarantees, is because 

physically there are two different controls. There's one 

physical chip or there's one physical component of the 

hardware system that is managing the data, the 

customer's data, and there's a different physical control 

that's managing the governance of the instance. And so, 

every modern EC2 instance today is built on the Nitro 

system. So that was the first major development for 

Annapurna Labs was Nitro. 

Jon Krohn: 00:34:02 So that's Nitro, like nitroglycerin, N-I-T-R-O? 

Emily Webber: 00:34:06 N-I-T-R-O, yeah. 

Jon Krohn: 00:34:08 Explosive. 

Emily Webber: 00:34:09 Yes, yes. So after the Nitro system, Annapurna started 

developing their second sort of main product line, which 
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is Graviton. So Graviton are custom CPUs, custom 

ARM-based CPUs developed by Annapurna Labs. And if 

you watched Reinvent, one of the highlights that you saw 

is that today more than half of new compute that comes 

onto AWS is actually Graviton CPU. 

Jon Krohn: 00:34:44 Ooh. 

Emily Webber: 00:34:44 Yes. So when you're looking at instances on AWS, when 

you see that little G at the end of a family, so like a C6G 

or even a G5G, that second G means it's a Graviton CPU. 

So that means you're going to get much better 

performance at a very competitive price. And so, the 

Graviton CPU is our second main product line. And then, 

Trainium and Inferentia is the third main product 

category from Annapurna Labs, which is now let's take 

this awesome ability that we've created in developing 

infrastructure and scaling infrastructure across AWS, 

and let's focus that on AIML. So Inferentia of course was 

developed and came out a number of years ago. Trainium 

3 is our third generation chip. So it's the third generation 

accelerator for AIML. And that is why it's such an exciting 

moment, right? 

 00:35:49 Because you see the breadth and the scope, and the 

incredible results that Annapurna has delivered over the 

years. And now this is totally focused, and now a large 

focus is AIML. So when customers are taking advantage 

of this, fundamentally they're interested, because they get 

the benefits of price performance. More than anything, 

it's this benefit of highly optimized compute that is scarily 

energy efficient. Annapurna is so good at identifying 

improvement areas to just take cost out of the equation 

and reduce complexity, and pass performance, and pass 

cost savings back to customers while meeting 

performance and in many cases, exceeding performance. 

So Trn2 is actually the most powerful EC2 instance on 

AWS for AIML, like full stop. When you look at the 
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performance metrics that we're seeing, it's a very exciting 

moment. It's an exciting moment for customers, exciting 

moment for the whole group. 

Jon Krohn: 00:37:05 Trainium 2 is the most powerful on AWS? 

Emily Webber: 00:37:08 Correct. 

Jon Krohn: 00:37:08 Wow, that's super cool. And so, what are the key 

differences between the first generation Trainium chip 

and Trainium 2? This is all stuff that's new since Ron's 

episode on the show, since episode 691 a couple of years 

ago. And so, is it like one or more kind of big conceptual 

changes that lead to this leap from Trainium one to two, 

or is it kind of a bunch of incremental changes that 

together combine to have all of this power in Trainium 2 

and such cost-effectiveness? 

Emily Webber: 00:37:44 Yeah, sure. So we try to keep it easy for you. And so, the 

way we keep it easy for you is that the core compute 

engine design isn't that different, actually. The neuron 

core itself, particularly between Trn1 and Trn2 is pretty 

much the same. So what's nice about that is it means the 

kernels that you write for Trn1 to Trn2, and the 

development modeling code would say like NXD is really, 

really easy to just move up from Trn1 to Trn2. The big 

difference- 

Jon Krohn: 00:38:20 Can I interrupt you for one quick second? It sounds like, 

so are you saying Trn1 and Trn2, is that like an 

abbreviation of Trainium? 

Emily Webber: 00:38:27 Yes. 

Jon Krohn: 00:38:28 Okay, okay. Okay, gotcha. 

Emily Webber: 00:38:29 That's also the name of, yeah, abbreviation of the name, 

and it's the instance name directly. 

Show Notes: http://www.superdatascience.com/881   19 

http://www.superdatascience.com/881


 
 

 
 
 
 
 

Jon Krohn: 00:38:36 Right, right, right, right. So yeah. Gotcha, gotcha, gotcha. 

Emily Webber: 00:38:39 Yeah, Trn1 and Trn2. 

Jon Krohn: 00:38:41 My apologies for interrupting. Carry on. 

Emily Webber: 00:38:42 No worries. Yeah, so the key differences between Trn1 

and Trn2, is that on Trn2 you have four X the compute. 

Jon Krohn: 00:38:52 Yeah, it's a big number. 

Emily Webber: 00:38:53 That is a big number. Now, the reason why that happens 

is because you have four times more neuron cores per 

card. So in Trn1, you have two neuron cores that are 

packaged up together in a single card, and then you have 

two HVM banks, and that is the accelerator, the 

combination of those. Trn2, you have eight neuron cores. 

So just multiplied by four, you have eight neuron cores, 

you have four HVM banks, each card itself is 96 gigs of 

HVM capacity. On the instance as a whole, you have 16 of 

those cards. So at the instance as a whole, you have 1.5 

terabytes of HVM capacity. And then, we gave you an 

ultra server. So, the ultra server is where you take four 

Trn2 instances, and then these are all combined in one 

giant server, actually. 

 00:40:05 The reason why we say that, so it's two racks, four 

servers, and then 64 cards that are all connected by 

Neuron link, which is our chip to chip interconnect, such 

that there is a minimum of two hops from one card to any 

other card. When you do like a neuron top or a neuron LS 

on a single Trn1 instance, it's going to show you 128 

trainable accelerators, because you have 128 neuron 

cores on your single instance. We actually have a way of 

grouping those. You can group them by what we call like 

a logical neuron core, which is kind of cool, because then 

you can change the size of the accelerator that you want 

based on the workload, which I think is very fun. 
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 00:40:58 And then, yeah, those are all packaged up into this giant 

ultra server. If you watched Reinvent, actually Peter 

Desantis wheeled out an ultra server on stage and spent 

much of his keynote just talking about it. It's such an 

awesome moment. But so, ultra servers are 

unambiguously the best way to train and host the largest 

language models on AWS. And you have the most 

powerful instances combined in a really compelling, 

innovative way that connects all of the cores and makes 

them very easy to train, and then to host while 

minimizing the number of hops that you need to do 

between hosts, because they're all logically one server. So 

ultra server is pretty cool. 

Jon Krohn: 00:41:48 Ultra server does sound pretty cool. I might be putting 

you on the spot with this question, but how many model 

parameters of a large language model say can you fit on 

an ultra server? 

Emily Webber: 00:41:59 Yeah, so it's kind of a weird question to answer to be 

honest, because you can fit a lot. But no, but what I 

mean is that realistically, you don't actually want to max 

out the memory, like realistically, you want to give 

yourself space, like for your batch size, for the optimizer, 

for the adapters. If you're training it, you're going to want 

to have multiple copies of it for something that's really 

large. If you're hosting it, you're also going to want 

multiple copies of it, because you're responding to many 

different users at a point in time. So it's actually a pretty 

complex question to answer, and it's highly use case 

dependent. 

 00:42:43 The rule of thumb we use though is like, and it's not what 

will fit, but again, it's what is actually good for a normal 

use case. So for a normal use case, language models that 

are in the 70 billion parameter range, we recommend 

those for Trn1. Trn1 is a good candidate for language 

models that aren't gigantic, but that are still sizable, and 
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Trn1 gives you competitive and powerful compute for 

training and hosting those models. Language models that 

are significantly larger than that go to Trn2. By all 

means, go play with an ultra server and get all those 

neuron cores, and see what you can do with it. 

 00:43:29 And again, what's nice about it, what I love about the 

stack is that NXD gives you both the connection into the 

compiler. So when you implement your modeling code in 

NXD, by default, you get a nice sync with the neuron 

compiler and all of the lower level XLA benefits, but we 

also shard the model for you. So when you want to play 

with different TP degrees, like say you want to try a TP 

degree of eight on Trn1, but then on Trn2, you want to 

try TP 32 and TP 64, and TP 128, because why not? And 

sort of see what happens. NXD makes it super easy to do 

that, because you're just changing a parameter right at 

the top of the program to then shard your checkpoint 

itself and redefine your distribution method. And so, 

yeah, NXD handles all of that for you, which I just 

absolutely love. 

Jon Krohn: 00:44:31 Do you ever feel isolated, surrounded by people who don't 

share your enthusiasm for data science and technology? 

Do you wish to connect with more like-minded 

individuals? Well, look no further, Super Data Science 

community is the perfect place to connect, interact, and 

exchange ideas with over 600 professionals in data 

science, machine learning, and AI. In addition to 

networking, you can get direct support for your career 

through the mentoring program, where experienced 

members help beginners navigate. Whether you're looking 

to learn, collaborate, or advance your career, our 

community is here to help you succeed. Join Kirill, 

Hadelin and myself, and hundreds of other members who 

connect daily. Start your free 14-day trial today at 

superdatascience.com and become a part of the 

community. 
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 00:45:16 Nice. And so, to define for our listeners that kind of that 

idea of TP 8, TP 32, TP 64, it's the precision of the digits 

at these model parameters, right? 

Emily Webber: 00:45:26 It is not. 

Jon Krohn: 00:45:27 Oh, it's not? 

Emily Webber: 00:45:28 Yeah. No, it's not. What I meant by TP was tensor parallel 

degree. So how many neuron cores you'll use to host one 

copy of your tensor, for example. So if you are doing a TP 

of eight, that means you're going to consume eight 

neuron cores to do operation X with your tensor. If you're 

doing a TP of 32, that means you're going to shard your 

model over those 32 neuron cores. In a data type world, 

you would be thinking like FP 32 and BF 16, and INT 8. I 

know they're similar, but very different meaning. 

Jon Krohn: 00:46:17 I said define for our audience, but I ended up meaning 

define for me. And so, tell me about this. So this TP 8, TP 

32, that now you've just explained, why would I make 

those changes and what impact does making those 

changes have? 

Emily Webber: 00:46:33 Yeah, sure. So it is pretty impactful. It impacts the 

collectives a lot actually. It impacts how much time your 

workload will spend in an all reduce, for example, or in a 

reduce scatter, or in a gather scatter. So those are these 

collective operations that support the program that you 

define and support your model, and they communicate 

across all of the cores and they collect information. And 

so, you use collectives when you're running distributed 

training and hosting very regularly, and it's important to 

understand the impact those collectives can have on your 

compute when you're profiling your workload and trying 

to improve it. 
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 00:47:23 And so, when you experiment with different TP degrees, it 

can improve performance and it can also degrade 

performance, because of the impact of the collectives, the 

impact on memory, it'll impact how large of a batch size 

you can hold, it'll impact your overall step time, et cetera. 

And so, that's why it's helpful to have this ability to easily 

test different TP degrees. Also on Trn2, because you have 

this LNC feature, logical neuron core feature that lets you 

actually change the size of the accelerator logically based 

on grouping it in sets of one, which is LNC one or 

grouping it in sets of two, which is LNC two. 

 00:48:13 And so, what that does is it actually shrinks the total 

number of available accelerators to your program. So on 

Trn2, an LNC one shows you like 128 trainable devices or 

available devices to your program. But when you set LNC 

to two, that shrinks the number. So instead of 128, then 

you see 64 and it makes it slightly more available in the 

HPN bandwidth. The banks obviously don't stay the 

same. I mean, the banks stay the same physically, the 

hardware doesn't change at all between those two 

settings, but it changes how much is available per core to 

your program. So it's changes and modifications like this 

that let you find the optimal balance in your program and 

in your workload, while easily experimenting with them 

through NXD. 

Jon Krohn: 00:49:13 I got you. So these configuration parameters like TP 

degrees, when we are dealing with a large language 

model, that's huge. So it's distributed across many 

different accelerators, many different compute nodes. 

These kinds of configuration parameters like TP degrees 

need to be configured to figure out for exactly your model 

in the situation you're using it. What is the optimal 

config? 

Emily Webber: 00:49:40 Totally, how many tokens per second can you get? What's 

your time to first token? How can you reduce your overall 
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cost by having fewer resources, but still being able to 

respond to N number of responses at a time. So, all of 

these questions we need to consider when we're trying to 

find the right instance and trying to find the right 

instance settings. 

Jon Krohn: 00:50:06 Very cool. All right, so now we have a great understanding 

of why a Trainium chip or a Trainium 2 chip might be the 

obvious choice for a listener when they're thinking about 

training a large language model or Inferentia might be 

when deploying a large language model. So give us some 

real world examples of customers that you've had that 

have been able to take advantage of these chips to great 

effect. 

Emily Webber: 00:50:31 Yeah, sure. So our flagship customer example of course is 

Anthropic. So Anthropic has been a very active developer 

and customer with Trainium and Inferentia for quite 

some time. And so, the partnership has been 

phenomenal. Anthropic is a great team, it's an absolute 

privilege to support them as a customer. And we are 

developing some big projects together. So I don't know if 

you heard about Project Rainier, but Rainier is a 

absolutely gigantic cluster that we are developing in 

collaboration with Anthropic, with obviously 

state-of-the-art Trainium cards and instances. So it's just 

fascinating and it's just a pleasure to innovate with them. 

So Anthropic is a great example. 

Jon Krohn: 00:51:27 Fantastic. Yeah, they certainly are one of the leaders at 

the forefront of AI. For me personally, you wouldn't know 

this, Emily, regular listeners probably would that. My 

go-to large language model for most everyday use cases is 

Claude, and it has been for some time. So, love Anthropic 

and I'm not surprised to hear that there's amazing, 

intelligent people to work with there on big mountains of 

a problem like Project Rainier. For our listeners around 
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the world, Rainier Mountain is a big mountain in 

Washington State, not Washington, DC. 

Emily Webber: 00:52:05 It is. That is correct. But yeah, no, and then so obviously 

we have customers across the spectrum, so Anthropic is 

such an important customer. We also work with startups, 

so we work with startups like RC or Ninja Tech, who are 

training and hosting small language models. And in the 

small language model space, it's exciting for customers, 

because our price performance and our overall 

availability is just really compelling. They love the benefits 

that they get. They love the price, they love the 

performance, they love the models, they love the software 

stack. So we definitely see some great movement there. 

We also see customers like Databricks. We are doing some 

big projects with Databricks. 

Jon Krohn: 00:52:57 Not a small startup. 

Emily Webber: 00:53:00 Not a small startup. Yeah, no, we're doing some great 

work with Databricks, and then now we're expanding into 

the academic sector with Build on Trainium. 

Jon Krohn: 00:53:11 Cool. What's the Build on Trainium program? 

Emily Webber: 00:53:13 Yeah, so Build on Trainium is a credit program that we 

are running, which is $110 million in credits that we are 

offering to academics who are working on the future of AI. 

So fundamentally, this is a way for universities, 

academics, PIs, principal investigators to submit their 

research ideas to us about their big ideas. We want to 

know sort of what they've already tested on Trainium, 

what their early modeling and early kernel results are. 

And then, we are working to scale those results with them 

on a cluster that is up to 40,000 Trn1 cards. So, we have 

a very significant cluster that is available for researchers 

for the best AI projects in the world. And so, yeah, this is 
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a big project, of course. We've been working for it on quite 

some time. 

Jon Krohn: 00:54:12 Sounds really cool. Indeed, we'll have a link to the Build 

on Trainium program in the show notes for those 

academic listeners out there who would like to take 

advantage of this $110 million program from AWS. I'd 

also like to highlight another client of Trainium and 

Inferentia chips that I'm aware of, is Poolside. And I'm 

aware of that because back in episode 754, we had Jason 

Warner, the CEO of Poolside on the show, and it's a really 

cool startup. It isn't Databricks size yet, but Poolside, 

they're trying to tackle artificial general intelligence from 

the perspective of software, of code generation. And 

there's compelling arguments that Jason makes in 

episode 754 about how that might be feasible. So, cool 

episode to highlight there and another Trainium, 

Inferentia customer. 

Emily Webber: 00:55:06 Absolutely. Yeah, we're very excited about the Poolside 

partnership. 

Jon Krohn: 00:55:09 Nice. All right, so when you're trying to figure out what 

the right instance is, so we've talked about Trn1, Trn2, 

Inferentia chips as well, the other kinds of instances that 

are available on AWS. How do you pick the right kind of 

instance type for a particular machine learning task? 

Emily Webber: 00:55:29 Yeah, sure. So of course when you're, let's assume we're 

in the Trainium and Inferentia space for the moment. So 

when you're in that space, I mean really you have a 

couple of questions. Obviously, we have two product 

lines, Trainium and Inferentia, the neuron core itself 

though, the fundamental acceleration unit is the same, 

actually the neuron core is the same, the software stack 

is also the same. So you can mix and match, go back and 

forth, good compatibility. What's different between the 
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two is that the instance topology is just configured 

differently. 

 00:56:06 So with Trn1, we assume that you're going to be training. 

So we connect the cards in what's called a Taurus 

topology, or a 4D Taurus topology, which means that the 

cards are connected to each other in a way that you can 

easily do a backward pass, you can easily gather the 

results from all of the cards, and then update the 

optimizer state. So the connectivity between the cards is 

much more suited for a complex backward pass, whereas 

in the Inferentia line, again the same neuron core, but the 

topology is more aligned for just a forward pass. 

 00:56:51 So when you study the architecture, you'll see that you 

have just one row of the cards, for example. It's not this 

4D topology, it's sort of more aligned for just taking a 

large tensor, sharding a large tensor on the fleet and then 

doing a forward pass. So that's some of the difference. 

Another difference is that in Inferentia you have more 

choices, you have many different options. For instance, 

size between how many accelerators you want, your HBM 

capacity as a result of that. Whereas in Trainium, it's sort 

of really small and really large. So that's why we see a 

good benefit on training, where you're doing your small 

development with a single Trn1 and then you're scaling it 

up for one large instance, and then as many instances as 

you can get, and you don't really need that flexibility. 

Whereas in Inferentia, you might want to host your seven 

billion or your 11 billion parameter model that isn't going 

to have the same compute requirements. 

Jon Krohn: 00:58:11 Nice. That was a great explanation, as they have been 

throughout this episode. And actually, speaking of your 

great explanations, you do have a history of education. I 

mentioned that earlier in the episode. We would talk 

about some of the educational stuff you did. So for 

example, you wrote a big 15 chapter book called 
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Pre-Trained Vision and Large Language Models in Python. 

It's got a good subtitle too, End to End Techniques for 

Building and Deploying Foundation Models on AWS. So 

short form title, Pre-trained Vision and LLMs in Python. 

And so, that's a big 15 chapter book. And you have also 

been an adjunct professor and a startup mentor. You 

created a course called Generative AI Foundations on 

AWS. 

 00:58:56 So we'll have that in the show notes as well. And when I 

put all of that into context for our listeners, it's probably 

totally unsurprising that you're involved in the Build on 

Trainium academic program that we were talking about 

earlier because that involves amazing research 

universities like UC Berkeley, Carnegie Mellon, the 

University of Texas at Austin and Oxford University. So 

very, very cool. I think this comes from our researcher, 

Serg Masis, who's always pulling in really interesting 

pieces from our guest backgrounds. I have this quote that 

at a Swiss machine learning conference called ALMD, you 

told the story of Francesco Petrarch, a poet from the 

Italian Renaissance and how this story relates to the AI 

development project. So could you elaborate on this story 

and how it influences your approach not only to AI 

development, but also your efforts in AI education? 

Emily Webber: 00:59:57 Sure. Yeah. So there's a lot to unpack there. Let's try and 

take it step by step. So again, because I don't have an 

undergrad in computer science and I don't have a PhD in 

computer science, I didn't have that opportunity. I feel 

like I've had to teach myself a lot and obviously I've had 

phenomenal mentors and have worked on phenomenal 

teams that pushed me, worked with phenomenal 

customers who pushed me. What I love about technology, 

the reason why I love software so much, is because in 

software, if you build it, you can understand it. At least 

that's how I feel. It doesn't matter how complicated 

something is, it doesn't matter if I didn't take that class. It 
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doesn't matter if I didn't have a PhD in whatever it is, if I 

can code it, I can convince myself that I can probably 

understand what's going on. 

 01:00:53 And so, from that perspective, that is the perspective by 

which I teach, because I understand that we live in a 

world where not everyone has every opportunity that 

maybe they wish they had, but nonetheless, here we are 

and we're doing our best. And so, I love teaching, because 

I love taking things that were hard for me to understand, 

that were hard for me to explain to myself. But because it 

was challenging, somehow I was able to find a way to 

simplify it to myself. Then I love sharing that with other 

people, because I know it simplifies their journey and it 

simplifies their path. Certainly simplifies their experience 

on AWS with my own technology stack. And so, that 

ethos, I guess I just love, I've always loved. So education 

is a part of why I enjoy that and it's a way to scale that, 

and help others grow. So that I just really enjoy. 

 01:01:53 I want to address the Petrarch point. I love that that came 

up. It's sometimes surprising how things you post on the 

internet show up later. So that's beautiful. I'm also just a 

humanist, like I love so many things in this world. I love 

art, I love art history, I love philosophy. I love thinking 

about things in ways that didn't previously consider to 

me. So the reason why I did that, I was prepping to do an 

invited talk, like an invited keynote at this conference in 

Switzerland, and this was at the time when LLMs were 

like just becoming to be popular and foundation models 

were just becoming to be popular. So I wanted like a nice 

quote about intelligence that would feel like culturally 

relevant. 

 01:02:46 So I thought Petrarch would be a good quote. So I got 

some nice phrase about human intelligence and the 

impact of human intelligence. And it's funny that we live 

in a world where we need to talk about human 
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intelligence as an important thing that matters. Like, I 

don't know, I see so much going on in the LLM space and 

the AGI space. I'm like, don't get me wrong. Obviously I'm 

all about scaling out computers and like developing AI, 

but I also care a lot about human intelligence. I find it 

super valuable in my own life to maintain my own 

intelligence as a goal. I find that valuable in the life of my 

team and people that I work with. It's like we need to 

continue to grow our own intelligence while we're 

obviously growing the intelligence of the machines. But 

that balance between those two I really enjoy and I just 

find so fun to consider. 

Jon Krohn: 01:03:49 Well, that idea of AI being for humans and supporting our 

intelligence and our actualization as individuals, and as a 

society. That's actually a theme of two recent episodes of 

this show. So, we have two episodes largely dedicated to 

that kind of idea, which is episodes 869 and 873, with 

Varun Godbole and Natalie Monbiot respectively. So yeah, 

there seems to be, it's something that kind of has just 

started to come onto my mind as well, and at the time of 

recording and preparing a keynote, kind of along those 

themes as well. So yeah, I think there's something special 

there. My final technical question for you before we get 

into our kind of wrap up questions, Emily, is just kind of 

your insights into what's going to happen next. Obviously 

it's a fast moving field, but you're right at the heartbeat of 

it there, working on hardware like Trainium and 

Inferentia. So field of AI is moving incredibly fast. What 

emerging technical challenges most excite you? What do 

you think is coming next? 

Emily Webber: 01:04:57 Yeah, sure. So I think where five years ago this was a 

question, unambiguously large language models are here 

to stay. This is just clear. How these continue to be 

integrated into applications, the nature of them, the 

fine-tuning of them, the agentic systems that are built on 

top of them, the pre-training of them, the dataset 
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selection for them, the evaluation of them, all of those will 

change. All of those are in flux. All of those will evolve. 

For a while, I've seen, particularly in my Sagemaker days, 

how over time it just makes so much sense to push 

knowledge into the model as much as possible. It 

simplifies the lift for development teams, simplifies the lift 

on data management, simplifies the lift on the application 

management. 

 01:05:50 So I think you'll continue to see a variety of ways that 

people try to push knowledge into LLMs, like push 

knowledge into an LLM in the pre-training stage, when 

you're creating the foundation model from scratch, you do 

it when you're doing supervised fine-tuning to teach it 

how to follow commands. You do it when aligning the 

model to perform complex reasoning. You do it when 

you're designing your rag system, you do it when you're 

designing your agentic system, but really all of those are 

just fluff compared to what's actually in the neural 

network itself. And so, what I think you'll continue to see 

is this synergy between people solving problems at the 

agentic system, at the agentic level that then are 

absorbed by the rag, that are absorbed at pre-training, 

that are absorbed by the dataset itself. 

 01:06:47 And then, obviously hardware is going to keep cruising. 

Like, we have a lot in store. Trn3 was pre-announced at 

Reinvent. Trn3 is on the way. We are very much just 

getting started in what you're going to see from Trainium 

and Inferentia with Nikki, with Bill on Trainium. So stay 

tuned. But in terms of the LLMs themselves, yeah, there's 

a lot that's going to continue to be the case. But it's also, 

you know, it's kind of encouraging that like the core 

problem is the same. Everyone's still trying to train their 

model the best they can and figure out how to host it, and 

figure out how to do inferencing on it the best. That has 

not changed. I don't expect that to change ever. But now 

the focus obviously is language models and doing that the 
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most efficiently with the best results, with the best 

mixture of results. And so, I think there's a lot that you'll 

continue to see in that space. 

Jon Krohn: 01:07:48 Fantastic answer. Thank you. Lots to look forward to. And 

of course driven by hardware, that's what's happening 

right now. Fantastic. Emily, this has been a sensational 

episode. I've learned a ton. I marked down for our show 

notes, maybe a record number of links that I'm going to 

have to, like terms, interesting terms that people will be 

able to dig into after the episode. So clearly a huge 

amount of concrete, useful content conveyed in this 

episode. Thank you so much. Before I let you go, I always 

ask my guests for a book recommendation. 

Emily Webber: 01:08:25 Yes. So I got this book today actually delivered by 

Amazon. I don't know if this is coming through, it's 

probably not coming through. 

Jon Krohn: 01:08:38 Most of our listeners are listeners only. We do have, there 

are some YouTube viewers. So Emily was holding up the 

book delivered by Amazon onto the video camera. What's 

the title of the book? 

Emily Webber: 01:08:57 Yeah, so the book is called Voice for the Voiceless and it's 

a book by his holiness the Dalai Lama. So I mentioned to 

you that I love to meditate and I'm a Buddhist 

practitioner, so of course I love to read, just personally, I 

love to read the words of his holiness the Dalai Lama. So 

I'm very much looking forward to reviewing this book, to 

reading it and sympathizing with his struggles, but also 

with his wisdom. I find his holiness to just really do a 

remarkable job of combining wisdom with compassion in 

the modern time, while also holding onto the strength of 

his lineage. And so, I'm very much looking forward to 

reading this book and I would tentatively offer my 

recommendation for it on that basis. 
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Jon Krohn: 01:09:50 Nice recommendation. I'm sure it's an exceptional book. I 

have read books by his holiness the Dalai Lama in the 

past. I read An Open Heart some years ago, which I 

thought was great. It includes some kind of introductory 

tips on meditation. I had already been meditating for a 

few years at that point, but there were some great 

pointers in there and just some great life advice. He 

seems to be quite sage. He's a sage maker, if you read his 

books. 

Emily Webber: 01:10:19 Indeed, indeed. 

Jon Krohn: 01:10:23 Yeah. He makes his readers sage. So there you go. A nice 

AWS joke. All right, Emily, so how can we follow you after 

this episode? 

Emily Webber: 01:10:34 Yeah, sure. So you're welcome to follow me on LinkedIn. I 

will warn you that I am just not active on social media. 

Jon Krohn: 01:10:43 How could you be Buddhist, centered and active on social 

media? Those are incompatible. 

Emily Webber: 01:10:50 I'm not saying they're incompatible, I'm just not that 

active on social media. 

Jon Krohn: 01:10:52 I bet it makes it harder. 

Emily Webber: 01:10:56 But yeah, you're actually the first podcast that I've ever 

done. 

Jon Krohn: 01:10:59 No. 

Emily Webber: 01:11:00 It's true. It's true. So I'm excited to burst my podcast 

bubble and yeah, follow me on LinkedIn, but hit me up on 

GitHub. I'm actually super active on GitHub. 

Jon Krohn: 01:11:13 There you go. 
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Emily Webber: 01:11:14 I forgot to mention this on. So for Build on Trainium, we 

just wrapped a competition actually, so we are offering 

$25,000 in cash to the top team who can develop the 

fastest NKI Llama, the fastest Llama implementation 

using NKI, actually. So the competition is over, but I am 

totally expecting projects like this to pop up again, so 

definitely stay tuned for more. But yeah, I'm really active 

on GitHub. When you're cutting issues in the Neuron 

SDK or the NKI SDK, feel free to tag me. I will respond. 

Shoot me your kernels. I'd love to see the work that 

people have. And yeah, let's go build, in the words of 

Werner Vogels. 

Jon Krohn: 01:12:08 And a reminder there, we talked about NKI earlier in the 

episode, but it's NKI, neuron kernel interface, and I'll 

have a link to that in the show notes too. 

Emily Webber: 01:12:17 Beautiful. Thank you, Jon. 

Jon Krohn: 01:12:19 Thank you, Emily, for taking the time. I'm so delighted to 

have had you on your first podcast appearance. You are a 

natural, and every podcast should have you on. I don't 

even care if they're in data science or not, to explain 

something wonderful about the world. Thank you, Emily. 

Emily Webber: 01:12:35 Thank you, Jon. 

Jon Krohn: 01:12:42 What a sensationally interesting episode with Emily 

Webber. In it, she covered how her background in 

meditation and Buddhist practice provided mental tools 

that helped her excel in computer science, by developing 

focus and calm problem-solving abilities. She talked 

about the Nitro system developed by Annapurna Labs 

that was acquired by Amazon in 2015 that physically 

separates data and instance control in cloud 

infrastructure, creating better security and scalability. 

She talked about how the Build on Trainium program is 

AWS's $110 million investment program, providing cloud 
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credits to academic researchers working on cutting-edge 

AI at institutions like Berkeley, Carnegie Mellon, UT 

Austin, and Oxford. 

 01:13:21 She talked about how Trainium 2 offers four times the 

compute power of Trainium one, with eight neuron cores 

per card instead of two and 1.5 whopping terabytes of 

high bandwidth memory capacity per instance. She talked 

about the AWS Neuron SDK that helps developers easily 

optimize and deploy models on Trainium and Inferentia 

chips through tools like NXD, which handles model 

sharding across accelerators. And she talked about 

hardware design decisions like TP, tensor parallelism 

degrees that significantly impact model training and 

inference efficiency, requiring careful optimization for 

specific workloads. 

 01:13:56 As always, you can get all the show notes, including the 

transcript for this episode, the video recording, any 

materials mentioned on the show, the URLs for Emily's 

social media profiles, as well as my own at 

superdatascience.com/881. And if you'd like to engage 

with me in person as opposed to just through social 

media, I'd love to meet you in real life at the open data 

science conference, ODSC East, running from May 13th 

to 15th in Boston. I'll be hosting the keynote sessions, 

and along with my longtime friend and colleague, the 

extraordinary Ed Donner, I'll be delivering a four-hour 

hands-on training in Python to demonstrate how you can 

design, train, and deploy cutting-edge multi-agent AI 

systems for real-life applications. 

 01:14:38 Yeah, and we could also just meet for a beer or whatever 

there. Thanks of course, to everyone on the 

SuperDataScience Podcast team. Our podcast manager, 

Sonja Brajovic, media editor Mario Pombo, partnerships 

manager Natalie Ziajski, researcher Serg Masis, writer Dr. 

Zara Karschay, and our founder Kirill Eremenko. Thanks 
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to all of them for producing another fabulous episode for 

us today. For enabling that super team to create this free 

podcast for you, we are deeply grateful to our sponsors. 

You can support the show by checking out our sponsors 

links, which are in the show notes. And if you yourself are 

interested in sponsoring an episode, you can get the 

details on how by heading to Jonkrohn.com/podcast. 

 01:15:18 All right, share this episode with people who might like to 

have it shared with them. Review the episode on your 

favorite podcasting app. I think that helps us get the word 

out about our show, subscribe if you're not a subscriber, 

feel free to edit our videos into shorts or whatever you 

like, just refer to us. But most importantly, just keep on 

tuning in. I'm so grateful to have you listening and hope I 

can continue to make episodes you love for years and 

years to come. Until next time, keep on rocking it out 

there and I'm looking forward to enjoying another round 

of the SuperDataScience Podcast with you very soon. 
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