

SDS PODCAST

EPISODE 881:

BEYOND GPUS:

THE POWER OF

CUSTOM AI

ACCELERATORS,

WITH EMILY WEBBER

Show Notes: http://www.superdatascience.com/881 1

http://www.superdatascience.com/881

Jon Krohn: 00:00:00 This is episode number 881 with Emily Webber, principal

solutions architect at AWS. Today’s episode is brought to

you by ODSC, the Open Data Science Conference.

 00:00:17 Welcome to the SuperDataScience Podcast, the most

listened to podcast in the data science industry. Each

week, we bring you fun and inspiring people and ideas,

exploring the cutting edge of machine learning, AI, and

related technologies that are transforming our world for

the better. I'm your host, Jon Krohn. Thanks for joining

me today. And now, let's make the complex simple.

 00:00:42 Welcome back to the SuperDataScience Podcast. Today

I'm delighted to have the amusing, brilliant and zen Emily

Webber as our guest on the show. Emily is a principal

solutions architect in the elite Annapurna Labs machine

learning service team that's part of Amazon Web Services.

She works directly on the Trainium and Inferentia

hardware accelerators for, respectively, training and

making inferences with AI models. She also works on the

NKI, or NKI, Neuron Kernel Interface that acts as a bare

metal language and compiler for programming AWS

instances that use Trainium and Inferentia chips.

 00:01:29 She wrote a book on pre-training foundation models. She

spent six years developing distributed systems for

customers on Amazon's cloud-based machine learning

platform, Sagemaker, and she leads the neuron data

science community, as well as technical aspects for the

Build on Trainium program, a $110 million credit

investment program for academic researchers. Today's

episode is on the technical side and will appeal most to

anyone who's keen to understand the relationship

between today's gigantic AI models and the hardware that

they run on.

 00:02:01 In today's episode, Emily details the little known story of

how Annapurna Labs revolutionized cloud computing,

Show Notes: http://www.superdatascience.com/881 2

http://www.superdatascience.com/881

what it takes to design hardware that can efficiently train

and deploy models with billions of parameters, how

Trainium 2 became the most powerful AI chip on AWS,

why AWS is investing $110 million worth of compute

credits in academic AI research, and how meditation and

Buddhist practice can enhance your focus and problem

solving abilities in tech. All right, you ready for this

fabulous episode? Let's go.

 00:02:30 Emily, welcome to the SuperDataScience Podcast. I'm so

excited to have you on the show. Where are you calling in

from today?

Emily Webber: 00:02:43 Hi, Jon. Excited to be here. I'm calling in from

Washington, DC.

Jon Krohn: 00:02:47 Nice. It's interesting times in that part of the world. Lots

of things happening, but we're not here. We've never been

a political show. We won't get into it. At the time of

recording, I'm excited. I'm looking forward to being at the

Data and AI Summit in Richmond, Virginia, which is not

crazy far from DC, or at least Virginia isn't. That part of

the world, Virginia, near DC, I've always really enjoyed

everything about it, except the traffic.

Emily Webber: 00:03:23 Yeah, no, the traffic is tough actually, this time of year it's

lovely, because the cherry blossoms are just beginning to

bloom. So peak season for cherry blossoms is coming up

at the end of March. But one of the primary reasons I'm

in DC, is because it's the HQ2 area for Amazon, so it's our

second headquarters. You remember a number of years

ago we did this sort of HQ2 search and Crystal City,

Virginia was awarded HQ2, and so I moved out here a

number of years ago to be a part of all of the activities

and everything that's going on there.

Jon Krohn: 00:04:02 That's very cool. Now, it reminds me though, wasn't it

initially supposed to be Manhattan? It was supposed to

Show Notes: http://www.superdatascience.com/881 3

http://www.superdatascience.com/881

be New York City and then there was an uprising against

it, and so they had to pick somewhere else. Because it

was like there was this concern, I can't remember exactly,

but that it would change too much too fast, this huge

influx of people into an already busy place or something

like that.

Emily Webber: 00:04:25 Yeah, no, there were a lot of great cities, obviously a lot of

great choices. I think the original spec was spread across

three cities, I think when they first announced that it was

like New York, DC and then I want to say somewhere in

Tennessee, if I'm not mistaken. And then, that sort of

boiled down into definitely the DC area and some other

places as well. But yeah, primarily DC.

Jon Krohn: 00:04:55 Nice. Well, I'm glad it's working out there. It sounds like a

great environment to work in. Certainly AWS is doing a lot

of exciting things. I thought that we might start, we

almost never start with going with somebody's career

path, but in your case, we're going to do that, because

you have a unique career trajectory that I think provides

some good context for the rest of the episode. So you

started with a degree in international finance and now

you've been a hands-on practitioner at Amazon for some

time working on AI and machine learning. So, tell us

about that transition to what you're doing today, your

draw to AIML.

Emily Webber: 00:05:32 Yeah, totally. So I would say I got into computer science a

little bit later. Definitely. I lived in Arizona actually, is

where I got that degree, from a school called Prescott

College. And I studied definitely finance. I was actually

interested in Buddhism as well. So I lived at a retreat

center for many years and studied meditation, and all

sorts of things.

Jon Krohn: 00:06:03 You do seem super zen, super empathetic. Our listeners

wouldn't know this, but we were talking for a while before

Show Notes: http://www.superdatascience.com/881 4

http://www.superdatascience.com/881

starting recording and I was like, "Wow, Emily is just

such an engaging, yeah, empathetic person." And I don't

know, so all that time in the monastery I think paid off.

Emily Webber: 00:06:20 Yes. I find myself coming back to this grounding many

times actually, because when we're in computer science,

when we're trying to solve an algorithmic problem, trying

to solve a compute problem, a development problem,

many times what we really need is focus, actually. We

need the ability to just bring our mind back to what the

goal is, what the details are, what the challenge is, and

not be overwhelmed by getting too fixated on something

or being afraid of something. And just developing this sort

of mental ability to calmly abide and calmly focus has

honestly been really helpful in my computer science

degree.

 00:07:10 So I studied at the University of Chicago after that and

did a joint degree that was a master's of public policy with

computational analysis actually. So studying public

policy projects through the lens of computer science, and

that was where I developed a love of data science. I

interned at what's called the Data Science for Summer

Good Social Fellowship, where we analyzed public policy

problems and worked with organizations who were

nonprofits or NGOs, analyzed their data science and then

delivered projects to them. And so, that's sort of where I

got very interested obviously in technology, technology

development and trying to make a positive impact in the

world. And that has led me to AWS.

Jon Krohn: 00:08:04 Very nice. Yeah, you've worked extensively with

Sagemaker, which a lot of our data science listeners

would be familiar with. Maybe you can give, because you

do an even better job than I could at explaining what

Sagemaker is. So you can let us know both Sagemaker

and other AWS AI services that you've worked with, but

now you're working on the Trainium and Inferentia team,

Show Notes: http://www.superdatascience.com/881 5

http://www.superdatascience.com/881

so it's hardware, compute hardware that you would use

instead of a GPU, you'd use a Trainium or Inferentia chip

to be doing a lot of the heavy lifting in training in the case

of Trainium, or at inference time with the Inferentia chip.

Yeah. So fill us in on Sagemaker, other AWS AI services

that you've worked on in the past, and why hardware,

Trainium, Inferentia took your fancy recently.

Emily Webber: 00:08:49 Yeah, absolutely. So I joined Amazon actually as one of

our first Sagemaker solution architect SAs. So I got to

work with some of our earliest customers in the

Sagemaker days and figure out-

Jon Krohn: 00:09:03 What's an SA?

Emily Webber: 00:09:05 Cool. So what is an SA, a solutions architect at AWS,

fundamentally, we work with customers. So that means

sort of your fingers are like on the heartbeat, they're on

the pulse of the business or on the pulse of the service,

because you're explaining what the service does to

customers every day. You're in the weeds with developers,

with data scientists, leadership on both the customer and

the service team about what feature A is doing, how well

it's doing, and what it needs to do in the future. So I love

being a solutions architect. I've always profoundly enjoyed

this as a role, because you have visibility into the whole

picture, you get to be a part of the whole lifecycle. And so,

I was one of our first solution architects for Sagemaker.

 00:10:01 So Sagemaker is a managed ML infrastructure at AWS.

Essentially you can use Sagemaker to spin up a notebook

server, use Sagemaker to spin up what we call training

jobs, which is where you're training your model in the

context of a job. Use Sagemaker to spin up ML hosting

infrastructure. We have prepackaged models that are

available in Sagemaker that you can pull down for

training and hosting. And we have a really cool

development environment. So Sagemaker Studio and the

Show Notes: http://www.superdatascience.com/881 6

http://www.superdatascience.com/881

unified studio that lets a data scientist. Actually what it

does is it decouples the UI that's hosting your

development environment from all of the compute that's

running your notebook and running your analytics job.

And we package it up really, really nicely. So Sagemaker

Studio is a great data science workbench, for example,

where an enterprise data science team can just get

onboarded, have all the tools that they need to go analyze

some data and train some models.

Jon Krohn: 00:11:08 Very nice. Yeah. And yeah, so then what was the

transition like? Why did you go from software to hardware

in the AI space?

Emily Webber: 00:11:18 Yeah, absolutely. So through many years on Sagemaker,

like many people, I saw how important foundation models

were. It was obvious that customers were increasingly

going to foundation models for their ability to unlock a

variety of use cases, but also the size of the models just

kept getting larger and larger, and they were just

consuming so many resources. And so, I set up many of

our distributed training capabilities. So we were running

distributed training workshops with customers, we were

doing accelerator health checks, we were developing

managed clusters, and that led to a service called

Sagemaker HyperPod, which is a fully managed parallel

environment to establish clusters essentially.

 00:12:14 So when you want to train and host large language

models and large foundation models on AWS, Sagemaker

HyperPod is a really easy way to have a managed slurm

environment that you can hop into and take advantage of

optimized libraries, and have a variety of health checks

and cluster management tools already available for you

without needing to develop that. And through this

journey, I became convinced that obviously foundation

models were the future of AI, but I also saw increasingly

how infrastructure was just the make or break really

Show Notes: http://www.superdatascience.com/881 7

http://www.superdatascience.com/881

everything came down to, from a customer perspective,

how many accelerators can I get? What is the size of those

accelerators? How healthy are they and how efficiently

can I train and host my models on top of that?

 00:13:11 Once I realized that that was the game, that that was the

primary focus for customers, I just wanted to dive in and

figure out what does it take to actually develop a new

accelerator? How do you develop a software stack on top

of that, and then how do you expose that through the rest

of the cloud? So fundamentally, I love the business

opportunity. It's just really exciting to think about,

obviously developing new accelerators and bringing those

to customers, but also the technical problems are just so

interesting. It is absolutely a joy to sit down and think

about, okay, how do I write a kernel for this algorithm?

How do we design communication collectives for this

whole host of workloads? Like, reinventing many of the

foundations of the ML technology stack as a whole on the

cloud is just the absolute biggest draw in my mind.

Jon Krohn: 00:14:09 Excited to announce, my friends, that the 10th annual

ODSC East, the one conference you don't want to miss in

2025, is returning to Boston from May 13-15! And I'll be

there leading a four-hour, hands-on workshop on

designing and deploying AI Agents in Python. ODSC East

is three days packed with hands-on sessions and deep

dives into cutting-edge AI topics, all taught by world-class

AI experts. Plus, there are many great networking

opportunities. ODSC East is seriously my favorite

conference in the world. No matter your skill level, ODSC

East will help you gain the AI expertise to take your

career to the next level. Don’t miss - Online Special

Discount ends soon! Learn more at odsc.com/boston.

 00:14:56 Wow. Yeah, your genuine excitement for it really shines

through. Absolutely. So you've said the word accelerate a

few times. I just want to disambiguate. So, earlier when I

Show Notes: http://www.superdatascience.com/881 8

http://odsc.com/boston
http://www.superdatascience.com/881

said you would use a Trainium or Inferentia chip in lieu

of a GPU, that term accelerator would apply to, it's the

broader umbrella that includes Trainium, Inferentia and

GPUs. These are all different kinds of hardware

accelerators specialized, in the case of Trainium and

Inferentia, specifically for neural networks, for deep

learning models like the large language models that have

taken the world by storm, and that got you, the

foundation models that got you excited about moving into

this space, and it's hardware driven.

 00:15:41 It's such an interesting phenomenon to watch from a

distance, where the scientific advances, the kind of new

ideas in terms of how should we model. They're not

necessarily super fast moving. Like, the transformer idea

many years later is still the dominant paradigm and at

some point that may be replaced, and that builds upon

deep learning, which seems like an even more entrenched

paradigm that will be difficult to shake. Maybe a nice

thing when you're designing accelerators, because it

means you have some kind of like linear algebra, some

kinds of matrix multiplication operations that you can be

like, "We're probably still going to be doing that in five

years."

 00:16:21 But yeah, it sounds like a really exciting space to be

working in. There's a term that you mentioned as you

were describing what excites you most about your work,

that I've got to admit, I don't understand very well, and so

I bet a lot of our audience doesn't as well, which is this

idea of a kernel. So when you talk about an algorithm

kernel, what does that mean?

Emily Webber: 00:16:42 Absolutely. So fundamentally, a kernel is a function that's

defined by the user. And when you're thinking about

programming up at the Python level, we don't really think

about that way. Everything we define is user defined. So

Show Notes: http://www.superdatascience.com/881 9

http://www.superdatascience.com/881

we're like, "What gives? Everything I write is a user

defined function."

 00:17:05 This thinking breaks down the further down the compute

stack you go. So if you want to run a program on

Trainium and Inferentia, for example, the way that

happens is you write your program in Python, you write

your program in PyTorch, and then you're going to

compile that through something that's called PyTorch

XLA. So accelerated linear algebra. What PyTorch XLA is

going to do, it's going to take the model that you defined

and it's going to represent that as a graph essentially. So

the structure of your model is represented as a graph. We

call that graph an HLO, high level operations. So you get

this HLO graph and then essentially we do a handshake

between that HLO graph that's generated from XLA, and

we feed that into the top of our compiler. And so, we

maintain a compiler that takes the graph that you

produced from PyTorch and from PyTorch XLA, and we

convert that through a variety of algorithms and

processes to ultimately generate the instruction set that

actually gets executed on the hardware directly.

 00:18:29 So what's a kernel? A kernel is where you override the

compiler and you get to define the operations on the chip

yourself using our kernel library. And our kernel library

is called NKI, the neuron kernel interface. So

fundamentally, a kernel is a function that's defined by the

user and not as generated through the compiler. Now,

there's a huge variety of sizes of kernels. So you can have

a kernel that's really just a hello world function, where

it's like, "Hey, I did a matmul," or, "I did like tensor add,"

and that's to get the software working and make sure you

have the environment ready.

 00:19:17 But then, what most people will do is build on top of that

to define a full operation. So you'll define a full forward

pass for your model or a full backward pass, or even just

Show Notes: http://www.superdatascience.com/881 10

http://www.superdatascience.com/881

a part of it, like maybe just the MLP up projection or

down projection. And then, what you're doing is you're

studying the compute optimization of that kernel. You

want to look at the data movement, you want to look at

the utilization, you want to look at your memory

utilization, your compute utilization. And so, I know

you've had Ron on the session in the past, and so

everything Ron teaches us and teaches the world about

compute optimization. We try to apply that when we're

developing our kernels. So we study the compute

requirements of a workload and we try to improve it. That

is the heart of writing a kernel and implementing this

algorithm that you have that's trying to improve

something for large language models. We implement that

as a kernel in order to improve the performance for it.

Jon Krohn: 00:20:24 An excellent explanation. You are an outstanding teacher

and we will actually get to later in this episode some of

the educational stuff that you've been doing. You're kind

of an inspiration there, but you're naturally such an

amazing explainer. That was like, 99th percentile of

explanations of technical concepts that I've ever heard. So

thank you for that introduction to kernels. And if people

are interested in that Ron Diamant episode, it's number

691 of this podcast, also an amazing explainer of

technical concepts if you want to understand a lot. In that

episode, we talked a ton about designing accelerators and

I learned so much in that episode. It was amazing. In fact,

Ron is such a luminary in this space that at NeurIPS,

neural information processing systems, arguably the

most prestigious academic AI conference in the world. I

was there in Vancouver in December and I met somebody

new at like a lunch or a dinner, or something. I can't

remember exactly the context, but they worked on

Trainium and Inferentia chips, and I'd said, "Oh, we had

someone from the show."

 00:21:28 He was like, "Was it Ron?" So yes.

Show Notes: http://www.superdatascience.com/881 11

http://www.superdatascience.com/881

Emily Webber: 00:21:34 Absolutely.

Jon Krohn: 00:21:35 He's an iconic person in this space. Yeah, so fantastic.

There was a lot in there that some people might want to

go back over to learn again about kernels. There was one

term in there that I might define quickly for the audience.

So you said MLP kind of casually in there is one of the

things that you could be implementing in a kernel. And

so, multilayer perceptron I'm guessing is what that is

there. And so, kind of like one of the fundamental

building blocks, it's like when you're thinking about

building a deep learning network, a multilayer perceptron

is kind of like it was an early deep learning network, but

then you can also think about it now as something that

you can scale up into a bigger architecture.

Emily Webber: 00:22:23 Yes, and it's really interesting to think about how we

represent data for kernels actually. So the MLP itself,

when you're designing say like a baby MLP or a tiny MLP,

in PyTorch, it's crazy easy to do that. It's so easy to just

define your tensor, define the operations you want to do

and call it. From the PyTorch perspective, that's it. Your

job is done, you've created an MLP. But it becomes so

interesting when you think about the size of that, when

you want to scale it up, when you want to shrink it, but

also when you want to actually process it, when you want

to run the computations on that to execute the operations

you've defined. And it quickly becomes very challenging to

do, actually.

 00:23:20 So when we're defining our kernels and when we're

defining our programs in Trainium, part of what we want

to do is think about how we're representing the data, how

we're structuring the data from the PyTorch perspective.

And then, the trick, the game is to try to optimize the data

representation and optimize the program for the

hardware. Actually, what we want to try and do is pick

designs within the data structure and within the

Show Notes: http://www.superdatascience.com/881 12

http://www.superdatascience.com/881

algorithm that leverage some of the lower-level

capabilities of the hardware to ultimately get the best

utilization and the best performance that we can. Once

you have sort of hardware and software programs that

are well-synced and running together, and using the

same assumptions, that's when you can really scale and

get excellent utilization, and then excellent price

performance. And that's really where we want to help

customers go.

Jon Krohn: 00:24:23 Speaking of the connection between very popular deep

learning libraries like PyTorch and the interaction of

those libraries with your hardware, with Trainium,

Inferentia accelerators, there's something called the AWS

Neuron SDK, software development kit, which is the SDK,

the software development kit for these AI chips, for

Trainium and Inferentia. Can you tell us how AWS

Neuron enables builders to use the frameworks of their

choice, like PyTorch or JAX without having to worry

about the underlying chip architecture?

Emily Webber: 00:24:57 Yeah, absolutely. So the Neuron SDK is a term that we

use to cover a very, very large variety of tools. And the

tools essentially are capabilities that we offer to

developers to easily take advantage of Trainium and

Inferentia. Some of the tools are really low-level things,

like the runtime, the driver, the compiler that pulls

everything together. Some of them are much higher-level,

so something like Torch Neuron X, TNX, or essentially

Neuron X Distributed, NXD.

 00:25:31 So, NXD is really the primary modeling library that's

really useful for customers, where when you want to go

train a model and you want to go host a model on

Trainium and Inferentia, NXD packages up many of the

lower-level complexities and it makes it easily available

for customers to access. Compiling your model, for

example, is handled by NXD. Sharding your model

Show Notes: http://www.superdatascience.com/881 13

http://www.superdatascience.com/881

actually, so taking a model checkpoint, say like a Llama

or a Pixar model, and then sharding that across the

accelerators that are available on your instance.

 00:26:11 NXD actually handles the model sharding for you both

from a data perspective, taking the checkpoint itself and

splitting the checkpoint into number of shards, but then

also the communication and the optimizer updates, and

the forward pass. NXD is a very, very comprehensive

modeling library. And so, NXD is useful for of course

implementing your own model, but also just pulling down

a model and running it. So when you want to just get

something that's prepackaged and test it for say

something like alignment or supervised fine-tuning, or

hosting, you can pull down the model packages that are

pre-built and pre-set with NXD, and just run them with

your experiments and with your changes. And there

should be very little complexity that's exposed to the

customer in those cases.

Jon Krohn: 00:27:10 Very cool. We'll have a link to the Neuron SDK in the

show notes so people can check that out more. But as

usual, another great example of your ability to explain

technical things really well.

Emily Webber: 00:27:23 Thank you.

Jon Krohn: 00:27:24 So with your experience previously on the Sagemaker

side, which we talked about earlier, does training in

Inferentia work with Sagemaker as well? Are there some

kinds of, just as the SDK allows you to take your

framework of choice, is it easy to have Sagemaker blend

on the hardware side with Trainium and Inferentia?

Emily Webber: 00:27:45 Yes, absolutely. I mean, you can run Sagemaker Notebook

instances, you can run Sagemaker Studio on Trainium. If

you want to say develop a new kernel or test NXD, you

can do that very easily on Sagemaker as a development

Show Notes: http://www.superdatascience.com/881 14

http://www.superdatascience.com/881

environment. We also have many models that we've

already supported on NXD that we'll make available

through what's called Sagemaker Jumpstart, where

Sagemaker Jumpstart is sort of a marketplace for

machine learning models and LLMs that are prepackaged,

and available. And when Sagemaker customers are, say,

browsing in Sagemaker Studio, they can click a button to

download the model, but they're not actually downloading

the model. What's happening is they're accessing the

model through the marketplace, the training and hosting

infrastructure. A lot of the software is fully managed by

Sagemaker, and then customers can bring their own data

sets, they can fine-tune the model, they can host the

model all through Sagemaker Jumpstart, and that

absolutely is well integrated with Trainium and Inferentia.

Jon Krohn: 00:28:56 Hey hey! This is your host, Jon Krohn. I’m excited to

announce that this northern-hemisphere spring, I’m

launching my own data science consultancy, a firm called

“Y Carrot”. (If you’re an ML practitioner who’s familiar

with “y hat”, you may get our name!). Regardless of who

you are, if you’re looking for a team that combines

decades of commercial experience in software

development and machine learning with

internationally-recognized expertise in all the cutting-edge

approaches, including GenAI, multi-agent systems, and

RAG, you’ve found us! We have rich experience across the

entire project lifecycle, from problem scoping and

proof-of-concept through to high-volume production

deployments. If you’d like to be one of our first clients,

head to ycarrot.com and click on “Partner with us” to tell

us how we can help! Again, that’s Y Carrot,

y-c-a-r-r-o-t-dot-com.

 00:29:46 Very nice. And yeah, you've been working closely with

customers on adopting Trainium, so it's something that's

picking up a lot of speed. Probably because Ron Diamand

was on this show a couple of years ago.

Show Notes: http://www.superdatascience.com/881 15

http://www.superdatascience.com/881

Emily Webber: 00:29:58 No doubt, no doubt.

Jon Krohn: 00:30:01 And in fact, huge companies like Apple. Apple joined your

Reinvent CEO keynote last year to talk about their use of

Inferentia and another chip called Graviton, which you'll

need to explain to us in a minute, because we haven't

talked about that on air ever. But they talked about their

use of Inferentia and Graviton, and why they're excited

about Trainium 2, another thing that we haven't talked

about yet in this episode. So what are some of the most

interesting technical challenges that customers like Apple

are trying to solve? So let's start there and you can tell us

about this Graviton chip, the Trainium 2 chip, and maybe

this kind of relates to a general question that I've been

meaning to ask you this whole episode, and I have it just

continue to forget with each wonderful explanation that

you give after another, which is that why should

somebody, why should a listener, for example, consider

using an accelerator like Trainium and Inferentia instead

of a GPU? Maybe that's a great question to start with, and

then I'll remind you of the other, the series of questions

that led me to that question.

Emily Webber: 00:31:04 Sounds good. Thank you. Thank you. Yeah, so I mean,

fundamentally at AWS we really believe in customer

choice. We believe in a cloud. We believe in a cloud service

provider that enables customers to have choice about

data sets, have choice about models, and have choice

about accelerated hardware. We think it's good for

customers to have that ability and to have real options

that is ultimately best for consumers and that's best for

customers. So fundamentally, that's the direction.

Annapurna Labs is an awesome company. Annapurna

Labs has been building infrastructure for AWS for many

years. So Annapurna Labs is a startup that Amazon

acquired in 2015 primarily to develop the hypervisor,

actually.

Show Notes: http://www.superdatascience.com/881 16

http://www.superdatascience.com/881

 00:32:00 So they developed what's called the Nitro System. Yeah,

we'll talk it through. They developed it. Yeah, it's like the

coolest story in tech that is the least told. So here's the

scoop. So in 2015, the way people were doing cloud 10

years ago is you had this thing called the hypervisor. And

the hypervisor essentially was this giant monolithic

software system that managed the entire host of all

servers. And the challenge with the hypervisor systems is

that it made it really hard to innovate for the cloud,

because all of the control, the communication, the data at

the server level was implemented in this giant monolithic

thing called the hypervisor.

 00:32:57 So Annapurna had this crazy idea of decoupling the parts

of the hypervisor that you need to scale up the cloud at

the physical level. So they developed what's called the

Nitro system today, which provides physical separation

for things like the data that's running on the instance

from the communication that's controlling the instance.

And so, this is both how AWS scales and how AWS

provides such strong security guarantees, is because

physically there are two different controls. There's one

physical chip or there's one physical component of the

hardware system that is managing the data, the

customer's data, and there's a different physical control

that's managing the governance of the instance. And so,

every modern EC2 instance today is built on the Nitro

system. So that was the first major development for

Annapurna Labs was Nitro.

Jon Krohn: 00:34:02 So that's Nitro, like nitroglycerin, N-I-T-R-O?

Emily Webber: 00:34:06 N-I-T-R-O, yeah.

Jon Krohn: 00:34:08 Explosive.

Emily Webber: 00:34:09 Yes, yes. So after the Nitro system, Annapurna started

developing their second sort of main product line, which

Show Notes: http://www.superdatascience.com/881 17

http://www.superdatascience.com/881

is Graviton. So Graviton are custom CPUs, custom

ARM-based CPUs developed by Annapurna Labs. And if

you watched Reinvent, one of the highlights that you saw

is that today more than half of new compute that comes

onto AWS is actually Graviton CPU.

Jon Krohn: 00:34:44 Ooh.

Emily Webber: 00:34:44 Yes. So when you're looking at instances on AWS, when

you see that little G at the end of a family, so like a C6G

or even a G5G, that second G means it's a Graviton CPU.

So that means you're going to get much better

performance at a very competitive price. And so, the

Graviton CPU is our second main product line. And then,

Trainium and Inferentia is the third main product

category from Annapurna Labs, which is now let's take

this awesome ability that we've created in developing

infrastructure and scaling infrastructure across AWS,

and let's focus that on AIML. So Inferentia of course was

developed and came out a number of years ago. Trainium

3 is our third generation chip. So it's the third generation

accelerator for AIML. And that is why it's such an exciting

moment, right?

 00:35:49 Because you see the breadth and the scope, and the

incredible results that Annapurna has delivered over the

years. And now this is totally focused, and now a large

focus is AIML. So when customers are taking advantage

of this, fundamentally they're interested, because they get

the benefits of price performance. More than anything,

it's this benefit of highly optimized compute that is scarily

energy efficient. Annapurna is so good at identifying

improvement areas to just take cost out of the equation

and reduce complexity, and pass performance, and pass

cost savings back to customers while meeting

performance and in many cases, exceeding performance.

So Trn2 is actually the most powerful EC2 instance on

AWS for AIML, like full stop. When you look at the

Show Notes: http://www.superdatascience.com/881 18

http://www.superdatascience.com/881

performance metrics that we're seeing, it's a very exciting

moment. It's an exciting moment for customers, exciting

moment for the whole group.

Jon Krohn: 00:37:05 Trainium 2 is the most powerful on AWS?

Emily Webber: 00:37:08 Correct.

Jon Krohn: 00:37:08 Wow, that's super cool. And so, what are the key

differences between the first generation Trainium chip

and Trainium 2? This is all stuff that's new since Ron's

episode on the show, since episode 691 a couple of years

ago. And so, is it like one or more kind of big conceptual

changes that lead to this leap from Trainium one to two,

or is it kind of a bunch of incremental changes that

together combine to have all of this power in Trainium 2

and such cost-effectiveness?

Emily Webber: 00:37:44 Yeah, sure. So we try to keep it easy for you. And so, the

way we keep it easy for you is that the core compute

engine design isn't that different, actually. The neuron

core itself, particularly between Trn1 and Trn2 is pretty

much the same. So what's nice about that is it means the

kernels that you write for Trn1 to Trn2, and the

development modeling code would say like NXD is really,

really easy to just move up from Trn1 to Trn2. The big

difference-

Jon Krohn: 00:38:20 Can I interrupt you for one quick second? It sounds like,

so are you saying Trn1 and Trn2, is that like an

abbreviation of Trainium?

Emily Webber: 00:38:27 Yes.

Jon Krohn: 00:38:28 Okay, okay. Okay, gotcha.

Emily Webber: 00:38:29 That's also the name of, yeah, abbreviation of the name,

and it's the instance name directly.

Show Notes: http://www.superdatascience.com/881 19

http://www.superdatascience.com/881

Jon Krohn: 00:38:36 Right, right, right, right. So yeah. Gotcha, gotcha, gotcha.

Emily Webber: 00:38:39 Yeah, Trn1 and Trn2.

Jon Krohn: 00:38:41 My apologies for interrupting. Carry on.

Emily Webber: 00:38:42 No worries. Yeah, so the key differences between Trn1

and Trn2, is that on Trn2 you have four X the compute.

Jon Krohn: 00:38:52 Yeah, it's a big number.

Emily Webber: 00:38:53 That is a big number. Now, the reason why that happens

is because you have four times more neuron cores per

card. So in Trn1, you have two neuron cores that are

packaged up together in a single card, and then you have

two HVM banks, and that is the accelerator, the

combination of those. Trn2, you have eight neuron cores.

So just multiplied by four, you have eight neuron cores,

you have four HVM banks, each card itself is 96 gigs of

HVM capacity. On the instance as a whole, you have 16 of

those cards. So at the instance as a whole, you have 1.5

terabytes of HVM capacity. And then, we gave you an

ultra server. So, the ultra server is where you take four

Trn2 instances, and then these are all combined in one

giant server, actually.

 00:40:05 The reason why we say that, so it's two racks, four

servers, and then 64 cards that are all connected by

Neuron link, which is our chip to chip interconnect, such

that there is a minimum of two hops from one card to any

other card. When you do like a neuron top or a neuron LS

on a single Trn1 instance, it's going to show you 128

trainable accelerators, because you have 128 neuron

cores on your single instance. We actually have a way of

grouping those. You can group them by what we call like

a logical neuron core, which is kind of cool, because then

you can change the size of the accelerator that you want

based on the workload, which I think is very fun.

Show Notes: http://www.superdatascience.com/881 20

http://www.superdatascience.com/881

 00:40:58 And then, yeah, those are all packaged up into this giant

ultra server. If you watched Reinvent, actually Peter

Desantis wheeled out an ultra server on stage and spent

much of his keynote just talking about it. It's such an

awesome moment. But so, ultra servers are

unambiguously the best way to train and host the largest

language models on AWS. And you have the most

powerful instances combined in a really compelling,

innovative way that connects all of the cores and makes

them very easy to train, and then to host while

minimizing the number of hops that you need to do

between hosts, because they're all logically one server. So

ultra server is pretty cool.

Jon Krohn: 00:41:48 Ultra server does sound pretty cool. I might be putting

you on the spot with this question, but how many model

parameters of a large language model say can you fit on

an ultra server?

Emily Webber: 00:41:59 Yeah, so it's kind of a weird question to answer to be

honest, because you can fit a lot. But no, but what I

mean is that realistically, you don't actually want to max

out the memory, like realistically, you want to give

yourself space, like for your batch size, for the optimizer,

for the adapters. If you're training it, you're going to want

to have multiple copies of it for something that's really

large. If you're hosting it, you're also going to want

multiple copies of it, because you're responding to many

different users at a point in time. So it's actually a pretty

complex question to answer, and it's highly use case

dependent.

 00:42:43 The rule of thumb we use though is like, and it's not what

will fit, but again, it's what is actually good for a normal

use case. So for a normal use case, language models that

are in the 70 billion parameter range, we recommend

those for Trn1. Trn1 is a good candidate for language

models that aren't gigantic, but that are still sizable, and

Show Notes: http://www.superdatascience.com/881 21

http://www.superdatascience.com/881

Trn1 gives you competitive and powerful compute for

training and hosting those models. Language models that

are significantly larger than that go to Trn2. By all

means, go play with an ultra server and get all those

neuron cores, and see what you can do with it.

 00:43:29 And again, what's nice about it, what I love about the

stack is that NXD gives you both the connection into the

compiler. So when you implement your modeling code in

NXD, by default, you get a nice sync with the neuron

compiler and all of the lower level XLA benefits, but we

also shard the model for you. So when you want to play

with different TP degrees, like say you want to try a TP

degree of eight on Trn1, but then on Trn2, you want to

try TP 32 and TP 64, and TP 128, because why not? And

sort of see what happens. NXD makes it super easy to do

that, because you're just changing a parameter right at

the top of the program to then shard your checkpoint

itself and redefine your distribution method. And so,

yeah, NXD handles all of that for you, which I just

absolutely love.

Jon Krohn: 00:44:31 Do you ever feel isolated, surrounded by people who don't

share your enthusiasm for data science and technology?

Do you wish to connect with more like-minded

individuals? Well, look no further, Super Data Science

community is the perfect place to connect, interact, and

exchange ideas with over 600 professionals in data

science, machine learning, and AI. In addition to

networking, you can get direct support for your career

through the mentoring program, where experienced

members help beginners navigate. Whether you're looking

to learn, collaborate, or advance your career, our

community is here to help you succeed. Join Kirill,

Hadelin and myself, and hundreds of other members who

connect daily. Start your free 14-day trial today at

superdatascience.com and become a part of the

community.

Show Notes: http://www.superdatascience.com/881 22

http://www.superdatascience.com/881

 00:45:16 Nice. And so, to define for our listeners that kind of that

idea of TP 8, TP 32, TP 64, it's the precision of the digits

at these model parameters, right?

Emily Webber: 00:45:26 It is not.

Jon Krohn: 00:45:27 Oh, it's not?

Emily Webber: 00:45:28 Yeah. No, it's not. What I meant by TP was tensor parallel

degree. So how many neuron cores you'll use to host one

copy of your tensor, for example. So if you are doing a TP

of eight, that means you're going to consume eight

neuron cores to do operation X with your tensor. If you're

doing a TP of 32, that means you're going to shard your

model over those 32 neuron cores. In a data type world,

you would be thinking like FP 32 and BF 16, and INT 8. I

know they're similar, but very different meaning.

Jon Krohn: 00:46:17 I said define for our audience, but I ended up meaning

define for me. And so, tell me about this. So this TP 8, TP

32, that now you've just explained, why would I make

those changes and what impact does making those

changes have?

Emily Webber: 00:46:33 Yeah, sure. So it is pretty impactful. It impacts the

collectives a lot actually. It impacts how much time your

workload will spend in an all reduce, for example, or in a

reduce scatter, or in a gather scatter. So those are these

collective operations that support the program that you

define and support your model, and they communicate

across all of the cores and they collect information. And

so, you use collectives when you're running distributed

training and hosting very regularly, and it's important to

understand the impact those collectives can have on your

compute when you're profiling your workload and trying

to improve it.

Show Notes: http://www.superdatascience.com/881 23

http://www.superdatascience.com/881

 00:47:23 And so, when you experiment with different TP degrees, it

can improve performance and it can also degrade

performance, because of the impact of the collectives, the

impact on memory, it'll impact how large of a batch size

you can hold, it'll impact your overall step time, et cetera.

And so, that's why it's helpful to have this ability to easily

test different TP degrees. Also on Trn2, because you have

this LNC feature, logical neuron core feature that lets you

actually change the size of the accelerator logically based

on grouping it in sets of one, which is LNC one or

grouping it in sets of two, which is LNC two.

 00:48:13 And so, what that does is it actually shrinks the total

number of available accelerators to your program. So on

Trn2, an LNC one shows you like 128 trainable devices or

available devices to your program. But when you set LNC

to two, that shrinks the number. So instead of 128, then

you see 64 and it makes it slightly more available in the

HPN bandwidth. The banks obviously don't stay the

same. I mean, the banks stay the same physically, the

hardware doesn't change at all between those two

settings, but it changes how much is available per core to

your program. So it's changes and modifications like this

that let you find the optimal balance in your program and

in your workload, while easily experimenting with them

through NXD.

Jon Krohn: 00:49:13 I got you. So these configuration parameters like TP

degrees, when we are dealing with a large language

model, that's huge. So it's distributed across many

different accelerators, many different compute nodes.

These kinds of configuration parameters like TP degrees

need to be configured to figure out for exactly your model

in the situation you're using it. What is the optimal

config?

Emily Webber: 00:49:40 Totally, how many tokens per second can you get? What's

your time to first token? How can you reduce your overall

Show Notes: http://www.superdatascience.com/881 24

http://www.superdatascience.com/881

cost by having fewer resources, but still being able to

respond to N number of responses at a time. So, all of

these questions we need to consider when we're trying to

find the right instance and trying to find the right

instance settings.

Jon Krohn: 00:50:06 Very cool. All right, so now we have a great understanding

of why a Trainium chip or a Trainium 2 chip might be the

obvious choice for a listener when they're thinking about

training a large language model or Inferentia might be

when deploying a large language model. So give us some

real world examples of customers that you've had that

have been able to take advantage of these chips to great

effect.

Emily Webber: 00:50:31 Yeah, sure. So our flagship customer example of course is

Anthropic. So Anthropic has been a very active developer

and customer with Trainium and Inferentia for quite

some time. And so, the partnership has been

phenomenal. Anthropic is a great team, it's an absolute

privilege to support them as a customer. And we are

developing some big projects together. So I don't know if

you heard about Project Rainier, but Rainier is a

absolutely gigantic cluster that we are developing in

collaboration with Anthropic, with obviously

state-of-the-art Trainium cards and instances. So it's just

fascinating and it's just a pleasure to innovate with them.

So Anthropic is a great example.

Jon Krohn: 00:51:27 Fantastic. Yeah, they certainly are one of the leaders at

the forefront of AI. For me personally, you wouldn't know

this, Emily, regular listeners probably would that. My

go-to large language model for most everyday use cases is

Claude, and it has been for some time. So, love Anthropic

and I'm not surprised to hear that there's amazing,

intelligent people to work with there on big mountains of

a problem like Project Rainier. For our listeners around

Show Notes: http://www.superdatascience.com/881 25

http://www.superdatascience.com/881

the world, Rainier Mountain is a big mountain in

Washington State, not Washington, DC.

Emily Webber: 00:52:05 It is. That is correct. But yeah, no, and then so obviously

we have customers across the spectrum, so Anthropic is

such an important customer. We also work with startups,

so we work with startups like RC or Ninja Tech, who are

training and hosting small language models. And in the

small language model space, it's exciting for customers,

because our price performance and our overall

availability is just really compelling. They love the benefits

that they get. They love the price, they love the

performance, they love the models, they love the software

stack. So we definitely see some great movement there.

We also see customers like Databricks. We are doing some

big projects with Databricks.

Jon Krohn: 00:52:57 Not a small startup.

Emily Webber: 00:53:00 Not a small startup. Yeah, no, we're doing some great

work with Databricks, and then now we're expanding into

the academic sector with Build on Trainium.

Jon Krohn: 00:53:11 Cool. What's the Build on Trainium program?

Emily Webber: 00:53:13 Yeah, so Build on Trainium is a credit program that we

are running, which is $110 million in credits that we are

offering to academics who are working on the future of AI.

So fundamentally, this is a way for universities,

academics, PIs, principal investigators to submit their

research ideas to us about their big ideas. We want to

know sort of what they've already tested on Trainium,

what their early modeling and early kernel results are.

And then, we are working to scale those results with them

on a cluster that is up to 40,000 Trn1 cards. So, we have

a very significant cluster that is available for researchers

for the best AI projects in the world. And so, yeah, this is

Show Notes: http://www.superdatascience.com/881 26

http://www.superdatascience.com/881

a big project, of course. We've been working for it on quite

some time.

Jon Krohn: 00:54:12 Sounds really cool. Indeed, we'll have a link to the Build

on Trainium program in the show notes for those

academic listeners out there who would like to take

advantage of this $110 million program from AWS. I'd

also like to highlight another client of Trainium and

Inferentia chips that I'm aware of, is Poolside. And I'm

aware of that because back in episode 754, we had Jason

Warner, the CEO of Poolside on the show, and it's a really

cool startup. It isn't Databricks size yet, but Poolside,

they're trying to tackle artificial general intelligence from

the perspective of software, of code generation. And

there's compelling arguments that Jason makes in

episode 754 about how that might be feasible. So, cool

episode to highlight there and another Trainium,

Inferentia customer.

Emily Webber: 00:55:06 Absolutely. Yeah, we're very excited about the Poolside

partnership.

Jon Krohn: 00:55:09 Nice. All right, so when you're trying to figure out what

the right instance is, so we've talked about Trn1, Trn2,

Inferentia chips as well, the other kinds of instances that

are available on AWS. How do you pick the right kind of

instance type for a particular machine learning task?

Emily Webber: 00:55:29 Yeah, sure. So of course when you're, let's assume we're

in the Trainium and Inferentia space for the moment. So

when you're in that space, I mean really you have a

couple of questions. Obviously, we have two product

lines, Trainium and Inferentia, the neuron core itself

though, the fundamental acceleration unit is the same,

actually the neuron core is the same, the software stack

is also the same. So you can mix and match, go back and

forth, good compatibility. What's different between the

Show Notes: http://www.superdatascience.com/881 27

http://www.superdatascience.com/881

two is that the instance topology is just configured

differently.

 00:56:06 So with Trn1, we assume that you're going to be training.

So we connect the cards in what's called a Taurus

topology, or a 4D Taurus topology, which means that the

cards are connected to each other in a way that you can

easily do a backward pass, you can easily gather the

results from all of the cards, and then update the

optimizer state. So the connectivity between the cards is

much more suited for a complex backward pass, whereas

in the Inferentia line, again the same neuron core, but the

topology is more aligned for just a forward pass.

 00:56:51 So when you study the architecture, you'll see that you

have just one row of the cards, for example. It's not this

4D topology, it's sort of more aligned for just taking a

large tensor, sharding a large tensor on the fleet and then

doing a forward pass. So that's some of the difference.

Another difference is that in Inferentia you have more

choices, you have many different options. For instance,

size between how many accelerators you want, your HBM

capacity as a result of that. Whereas in Trainium, it's sort

of really small and really large. So that's why we see a

good benefit on training, where you're doing your small

development with a single Trn1 and then you're scaling it

up for one large instance, and then as many instances as

you can get, and you don't really need that flexibility.

Whereas in Inferentia, you might want to host your seven

billion or your 11 billion parameter model that isn't going

to have the same compute requirements.

Jon Krohn: 00:58:11 Nice. That was a great explanation, as they have been

throughout this episode. And actually, speaking of your

great explanations, you do have a history of education. I

mentioned that earlier in the episode. We would talk

about some of the educational stuff you did. So for

example, you wrote a big 15 chapter book called

Show Notes: http://www.superdatascience.com/881 28

http://www.superdatascience.com/881

Pre-Trained Vision and Large Language Models in Python.

It's got a good subtitle too, End to End Techniques for

Building and Deploying Foundation Models on AWS. So

short form title, Pre-trained Vision and LLMs in Python.

And so, that's a big 15 chapter book. And you have also

been an adjunct professor and a startup mentor. You

created a course called Generative AI Foundations on

AWS.

 00:58:56 So we'll have that in the show notes as well. And when I

put all of that into context for our listeners, it's probably

totally unsurprising that you're involved in the Build on

Trainium academic program that we were talking about

earlier because that involves amazing research

universities like UC Berkeley, Carnegie Mellon, the

University of Texas at Austin and Oxford University. So

very, very cool. I think this comes from our researcher,

Serg Masis, who's always pulling in really interesting

pieces from our guest backgrounds. I have this quote that

at a Swiss machine learning conference called ALMD, you

told the story of Francesco Petrarch, a poet from the

Italian Renaissance and how this story relates to the AI

development project. So could you elaborate on this story

and how it influences your approach not only to AI

development, but also your efforts in AI education?

Emily Webber: 00:59:57 Sure. Yeah. So there's a lot to unpack there. Let's try and

take it step by step. So again, because I don't have an

undergrad in computer science and I don't have a PhD in

computer science, I didn't have that opportunity. I feel

like I've had to teach myself a lot and obviously I've had

phenomenal mentors and have worked on phenomenal

teams that pushed me, worked with phenomenal

customers who pushed me. What I love about technology,

the reason why I love software so much, is because in

software, if you build it, you can understand it. At least

that's how I feel. It doesn't matter how complicated

something is, it doesn't matter if I didn't take that class. It

Show Notes: http://www.superdatascience.com/881 29

http://www.superdatascience.com/881

doesn't matter if I didn't have a PhD in whatever it is, if I

can code it, I can convince myself that I can probably

understand what's going on.

 01:00:53 And so, from that perspective, that is the perspective by

which I teach, because I understand that we live in a

world where not everyone has every opportunity that

maybe they wish they had, but nonetheless, here we are

and we're doing our best. And so, I love teaching, because

I love taking things that were hard for me to understand,

that were hard for me to explain to myself. But because it

was challenging, somehow I was able to find a way to

simplify it to myself. Then I love sharing that with other

people, because I know it simplifies their journey and it

simplifies their path. Certainly simplifies their experience

on AWS with my own technology stack. And so, that

ethos, I guess I just love, I've always loved. So education

is a part of why I enjoy that and it's a way to scale that,

and help others grow. So that I just really enjoy.

 01:01:53 I want to address the Petrarch point. I love that that came

up. It's sometimes surprising how things you post on the

internet show up later. So that's beautiful. I'm also just a

humanist, like I love so many things in this world. I love

art, I love art history, I love philosophy. I love thinking

about things in ways that didn't previously consider to

me. So the reason why I did that, I was prepping to do an

invited talk, like an invited keynote at this conference in

Switzerland, and this was at the time when LLMs were

like just becoming to be popular and foundation models

were just becoming to be popular. So I wanted like a nice

quote about intelligence that would feel like culturally

relevant.

 01:02:46 So I thought Petrarch would be a good quote. So I got

some nice phrase about human intelligence and the

impact of human intelligence. And it's funny that we live

in a world where we need to talk about human

Show Notes: http://www.superdatascience.com/881 30

http://www.superdatascience.com/881

intelligence as an important thing that matters. Like, I

don't know, I see so much going on in the LLM space and

the AGI space. I'm like, don't get me wrong. Obviously I'm

all about scaling out computers and like developing AI,

but I also care a lot about human intelligence. I find it

super valuable in my own life to maintain my own

intelligence as a goal. I find that valuable in the life of my

team and people that I work with. It's like we need to

continue to grow our own intelligence while we're

obviously growing the intelligence of the machines. But

that balance between those two I really enjoy and I just

find so fun to consider.

Jon Krohn: 01:03:49 Well, that idea of AI being for humans and supporting our

intelligence and our actualization as individuals, and as a

society. That's actually a theme of two recent episodes of

this show. So, we have two episodes largely dedicated to

that kind of idea, which is episodes 869 and 873, with

Varun Godbole and Natalie Monbiot respectively. So yeah,

there seems to be, it's something that kind of has just

started to come onto my mind as well, and at the time of

recording and preparing a keynote, kind of along those

themes as well. So yeah, I think there's something special

there. My final technical question for you before we get

into our kind of wrap up questions, Emily, is just kind of

your insights into what's going to happen next. Obviously

it's a fast moving field, but you're right at the heartbeat of

it there, working on hardware like Trainium and

Inferentia. So field of AI is moving incredibly fast. What

emerging technical challenges most excite you? What do

you think is coming next?

Emily Webber: 01:04:57 Yeah, sure. So I think where five years ago this was a

question, unambiguously large language models are here

to stay. This is just clear. How these continue to be

integrated into applications, the nature of them, the

fine-tuning of them, the agentic systems that are built on

top of them, the pre-training of them, the dataset

Show Notes: http://www.superdatascience.com/881 31

http://www.superdatascience.com/881

selection for them, the evaluation of them, all of those will

change. All of those are in flux. All of those will evolve.

For a while, I've seen, particularly in my Sagemaker days,

how over time it just makes so much sense to push

knowledge into the model as much as possible. It

simplifies the lift for development teams, simplifies the lift

on data management, simplifies the lift on the application

management.

 01:05:50 So I think you'll continue to see a variety of ways that

people try to push knowledge into LLMs, like push

knowledge into an LLM in the pre-training stage, when

you're creating the foundation model from scratch, you do

it when you're doing supervised fine-tuning to teach it

how to follow commands. You do it when aligning the

model to perform complex reasoning. You do it when

you're designing your rag system, you do it when you're

designing your agentic system, but really all of those are

just fluff compared to what's actually in the neural

network itself. And so, what I think you'll continue to see

is this synergy between people solving problems at the

agentic system, at the agentic level that then are

absorbed by the rag, that are absorbed at pre-training,

that are absorbed by the dataset itself.

 01:06:47 And then, obviously hardware is going to keep cruising.

Like, we have a lot in store. Trn3 was pre-announced at

Reinvent. Trn3 is on the way. We are very much just

getting started in what you're going to see from Trainium

and Inferentia with Nikki, with Bill on Trainium. So stay

tuned. But in terms of the LLMs themselves, yeah, there's

a lot that's going to continue to be the case. But it's also,

you know, it's kind of encouraging that like the core

problem is the same. Everyone's still trying to train their

model the best they can and figure out how to host it, and

figure out how to do inferencing on it the best. That has

not changed. I don't expect that to change ever. But now

the focus obviously is language models and doing that the

Show Notes: http://www.superdatascience.com/881 32

http://www.superdatascience.com/881

most efficiently with the best results, with the best

mixture of results. And so, I think there's a lot that you'll

continue to see in that space.

Jon Krohn: 01:07:48 Fantastic answer. Thank you. Lots to look forward to. And

of course driven by hardware, that's what's happening

right now. Fantastic. Emily, this has been a sensational

episode. I've learned a ton. I marked down for our show

notes, maybe a record number of links that I'm going to

have to, like terms, interesting terms that people will be

able to dig into after the episode. So clearly a huge

amount of concrete, useful content conveyed in this

episode. Thank you so much. Before I let you go, I always

ask my guests for a book recommendation.

Emily Webber: 01:08:25 Yes. So I got this book today actually delivered by

Amazon. I don't know if this is coming through, it's

probably not coming through.

Jon Krohn: 01:08:38 Most of our listeners are listeners only. We do have, there

are some YouTube viewers. So Emily was holding up the

book delivered by Amazon onto the video camera. What's

the title of the book?

Emily Webber: 01:08:57 Yeah, so the book is called Voice for the Voiceless and it's

a book by his holiness the Dalai Lama. So I mentioned to

you that I love to meditate and I'm a Buddhist

practitioner, so of course I love to read, just personally, I

love to read the words of his holiness the Dalai Lama. So

I'm very much looking forward to reviewing this book, to

reading it and sympathizing with his struggles, but also

with his wisdom. I find his holiness to just really do a

remarkable job of combining wisdom with compassion in

the modern time, while also holding onto the strength of

his lineage. And so, I'm very much looking forward to

reading this book and I would tentatively offer my

recommendation for it on that basis.

Show Notes: http://www.superdatascience.com/881 33

http://www.superdatascience.com/881

Jon Krohn: 01:09:50 Nice recommendation. I'm sure it's an exceptional book. I

have read books by his holiness the Dalai Lama in the

past. I read An Open Heart some years ago, which I

thought was great. It includes some kind of introductory

tips on meditation. I had already been meditating for a

few years at that point, but there were some great

pointers in there and just some great life advice. He

seems to be quite sage. He's a sage maker, if you read his

books.

Emily Webber: 01:10:19 Indeed, indeed.

Jon Krohn: 01:10:23 Yeah. He makes his readers sage. So there you go. A nice

AWS joke. All right, Emily, so how can we follow you after

this episode?

Emily Webber: 01:10:34 Yeah, sure. So you're welcome to follow me on LinkedIn. I

will warn you that I am just not active on social media.

Jon Krohn: 01:10:43 How could you be Buddhist, centered and active on social

media? Those are incompatible.

Emily Webber: 01:10:50 I'm not saying they're incompatible, I'm just not that

active on social media.

Jon Krohn: 01:10:52 I bet it makes it harder.

Emily Webber: 01:10:56 But yeah, you're actually the first podcast that I've ever

done.

Jon Krohn: 01:10:59 No.

Emily Webber: 01:11:00 It's true. It's true. So I'm excited to burst my podcast

bubble and yeah, follow me on LinkedIn, but hit me up on

GitHub. I'm actually super active on GitHub.

Jon Krohn: 01:11:13 There you go.

Show Notes: http://www.superdatascience.com/881 34

http://www.superdatascience.com/881

Emily Webber: 01:11:14 I forgot to mention this on. So for Build on Trainium, we

just wrapped a competition actually, so we are offering

$25,000 in cash to the top team who can develop the

fastest NKI Llama, the fastest Llama implementation

using NKI, actually. So the competition is over, but I am

totally expecting projects like this to pop up again, so

definitely stay tuned for more. But yeah, I'm really active

on GitHub. When you're cutting issues in the Neuron

SDK or the NKI SDK, feel free to tag me. I will respond.

Shoot me your kernels. I'd love to see the work that

people have. And yeah, let's go build, in the words of

Werner Vogels.

Jon Krohn: 01:12:08 And a reminder there, we talked about NKI earlier in the

episode, but it's NKI, neuron kernel interface, and I'll

have a link to that in the show notes too.

Emily Webber: 01:12:17 Beautiful. Thank you, Jon.

Jon Krohn: 01:12:19 Thank you, Emily, for taking the time. I'm so delighted to

have had you on your first podcast appearance. You are a

natural, and every podcast should have you on. I don't

even care if they're in data science or not, to explain

something wonderful about the world. Thank you, Emily.

Emily Webber: 01:12:35 Thank you, Jon.

Jon Krohn: 01:12:42 What a sensationally interesting episode with Emily

Webber. In it, she covered how her background in

meditation and Buddhist practice provided mental tools

that helped her excel in computer science, by developing

focus and calm problem-solving abilities. She talked

about the Nitro system developed by Annapurna Labs

that was acquired by Amazon in 2015 that physically

separates data and instance control in cloud

infrastructure, creating better security and scalability.

She talked about how the Build on Trainium program is

AWS's $110 million investment program, providing cloud

Show Notes: http://www.superdatascience.com/881 35

http://www.superdatascience.com/881

credits to academic researchers working on cutting-edge

AI at institutions like Berkeley, Carnegie Mellon, UT

Austin, and Oxford.

 01:13:21 She talked about how Trainium 2 offers four times the

compute power of Trainium one, with eight neuron cores

per card instead of two and 1.5 whopping terabytes of

high bandwidth memory capacity per instance. She talked

about the AWS Neuron SDK that helps developers easily

optimize and deploy models on Trainium and Inferentia

chips through tools like NXD, which handles model

sharding across accelerators. And she talked about

hardware design decisions like TP, tensor parallelism

degrees that significantly impact model training and

inference efficiency, requiring careful optimization for

specific workloads.

 01:13:56 As always, you can get all the show notes, including the

transcript for this episode, the video recording, any

materials mentioned on the show, the URLs for Emily's

social media profiles, as well as my own at

superdatascience.com/881. And if you'd like to engage

with me in person as opposed to just through social

media, I'd love to meet you in real life at the open data

science conference, ODSC East, running from May 13th

to 15th in Boston. I'll be hosting the keynote sessions,

and along with my longtime friend and colleague, the

extraordinary Ed Donner, I'll be delivering a four-hour

hands-on training in Python to demonstrate how you can

design, train, and deploy cutting-edge multi-agent AI

systems for real-life applications.

 01:14:38 Yeah, and we could also just meet for a beer or whatever

there. Thanks of course, to everyone on the

SuperDataScience Podcast team. Our podcast manager,

Sonja Brajovic, media editor Mario Pombo, partnerships

manager Natalie Ziajski, researcher Serg Masis, writer Dr.

Zara Karschay, and our founder Kirill Eremenko. Thanks

Show Notes: http://www.superdatascience.com/881 36

http://www.superdatascience.com/881

to all of them for producing another fabulous episode for

us today. For enabling that super team to create this free

podcast for you, we are deeply grateful to our sponsors.

You can support the show by checking out our sponsors

links, which are in the show notes. And if you yourself are

interested in sponsoring an episode, you can get the

details on how by heading to Jonkrohn.com/podcast.

 01:15:18 All right, share this episode with people who might like to

have it shared with them. Review the episode on your

favorite podcasting app. I think that helps us get the word

out about our show, subscribe if you're not a subscriber,

feel free to edit our videos into shorts or whatever you

like, just refer to us. But most importantly, just keep on

tuning in. I'm so grateful to have you listening and hope I

can continue to make episodes you love for years and

years to come. Until next time, keep on rocking it out

there and I'm looking forward to enjoying another round

of the SuperDataScience Podcast with you very soon.

Show Notes: http://www.superdatascience.com/881 37

http://www.superdatascience.com/881

